Background: We have recently shown that ischemic stroke causes a stress-mediator-induced long-lasting immunodepressive state in mice. Methods: Using head magnetic resonance imaging and standardized immunoassays, we prospectively investigated whether poststroke immunodepression is also seen in humans. Results: Compared to healthy volunteers (n = 30), a rapid depression of lymphocyte counts and a functional deactivation of monocytes and T helper type 1 cells was observed in acute stroke patients (SP; n = 40). Immunodepression was more pronounced in patients with severe clinical deficit or large infarction. On admission the combination of monocytic tumor necrosis factor α release ex vivo and the National Institute of Health Stroke Scale score were the best predictors for nosocomial infection, preferentially affecting older SP. Conclusion: Our data provide evidence for an immediate suppression of cell-mediated immune responses after ischemic stroke in humans.
Background and Purpose-Strokes have especially devastating implications if they occur early in life; however, only limited information exists on the characteristics of acute cerebrovascular disease in young adults. Although risk factors and manifestation of atherosclerosis are commonly associated with stroke in the elderly, recent data suggests different causes for stroke in the young. We initiated the prospective, multinational European study Stroke in Young Fabry Patients (sifap) to characterize a cohort of young stroke patients. Methods-Overall, 5023 patients aged 18 to 55 years with the diagnosis of ischemic stroke (3396) *Drs Rolfs, Fazekas and Grittner contributed equally to this work. Authors contributions: Dr Rolfs has conceptualized, initiated, and designed and organized the study, has been involved in the recruitment of the patients, and wrote significant parts of the manuscript. Dr Fazekas was involved in the study planning and has done together with Drs Enzinger and Schmidt the analysis of all MRI scans; this group was mainly involved in the statistical analysis of the MRI data. Drs Martus, Grittner, Holzhausen have taken responsibility for all statistical analysis and for the data structure of the total data bank. Drs Dichgans, Böttcher, Tatlisumak, Tanislav, Jungehulsing, Putaala, Huber, Bodechtel, Lichy, Hennerici, Kaps, Meyer, Kessler have been most active in the recruitment of the patients, drafting the manuscript and significantly influencing the scientific discussion. Dr Heuschmann was involved in drafting the manuscript and influencing the scientific discussion. Dr Norrving chaired the steering and publication committees of sifap, has written parts of the manuscript, and has significantly influenced the scientific discussions. Drs Lackner and Paschke, H. Mascher, Dr Riess have been involved in the laboratory analyses. Dr Kolodny has mostly contributed to the discussion of the Fabry cases. Dr Giese assisted in writing and editing the manuscript. All authors have reviewed, critically revised and approved the final version of the manuscript.The sponsors of the study had no role in the study design, data collection, data analysis, interpretation, writing of the manuscript, or the decision to submit the manuscript for publication. The academic authors had unrestricted access to the derived dataset, and assume full responsibility for the completeness, integrity, and interpretation of the data, as well as writing the study report and the decision to submit for publication.†Listed in Appendix I in the online-only Data Supplement. Jeffrey L. Saver, MD, was guest editor for this article.
BackgroundThe mismatch between diffusion weighted imaging (DWI) lesion and perfusion imaging (PI) deficit volumes has been used as a surrogate of ischemic penumbra. This pathophysiology-orientated patient selection criterion for acute stroke treatment may have the potential to replace a fixed time window. Two recent trials - DEFUSE and EPITHET - investigated the mismatch concept in a multicenter prospective approach. Both studies randomized highly selected patients (n = 74/n = 100) and therefore confirmation in a large consecutive cohort is desirable. We here present a single-center approach with a 3T MR tomograph next door to the stroke unit, serving as a bridge from the ER to the stroke unit to screen all TIA and stroke patients. Our primary hypothesis is that the prognostic value of the mismatch concept is depending on the vessel status. Primary endpoint of the study is infarct growth determined by imaging, secondary endpoints are neurological deficit on day 5-7 and functional outcome after 3 months.Methods and design1000Plus is a prospective, single centre observational study with 1200 patients to be recruited. All patients admitted to the ER with the clinical diagnosis of an acute cerebrovascular event within 24 hours after symptom onset are screened. Examinations are performed on day 1, 2 and 5-7 with neurological examination including National Institute of Health Stroke Scale (NIHSS) scoring and stroke MRI including T2*, DWI, TOF-MRA, FLAIR and PI. PI is conducted as dynamic susceptibility-enhanced contrast imaging with a fixed dosage of 5 ml 1 M Gadobutrol. For post-processing of PI, mean transit time (MTT) parametric images are determined by deconvolution of the arterial input function (AIF) which is automatically identified. Lesion volumes and mismatch are measured and calculated by using the perfusion mismatch analyzer (PMA) software from ASIST-Japan. Primary endpoint is the change of infarct size between baseline examination and day 5-7 follow up.DiscussionsThe aim of this study is to describe the incidence of mismatch and the predictive value of PI for final lesion size and functional outcome depending on delay of imaging and vascular recanalization. It is crucial to standardize PI for future randomized clinical trials as for individual therapeutic decisions and we expect to contribute to this challenging task.Trial Registrationclinicaltrials.gov NCT00715533
Background: Vascular hyperintensities of brain-supplying arteries on stroke FLAIR MRI are common and represent slow flow or stasis. FLAIR vascular hyperintensities (FVH) are discussed as an independent marker for cerebral hypoperfusion, but the impact on infarct size and clinical outcome in acute stroke patients is controversial. This study evaluates the association of FVH with infarct morphology, clinical stroke severity and infarct growth in patients with symptomatic internal carotid artery (ICA) or middle cerebral artery (MCA) occlusion. Methods: MR images of 84 patients [median age 73 years (IQR 65–80), 56.0% male, median NIHSS 7 (IQR 3–13)] with acute stroke due to symptomatic ICA or MCA occlusion or stenosis were reviewed. Vessel occlusions were identified by MRA time of flight and graded with the TIMI score. Diffusion and perfusion deficit volumes on admission and FLAIR lesion volumes on discharge were assessed. The presence and number of FVH were evaluated according to MCA-ASPECT areas, and associations with MR volumes, morphology of infarction, recanalization status, presence of white matter disease and hemorrhagical transformation as well as with stroke severity (NIHSS), stroke etiology and thrombolysis rate were analyzed. Results: FVH were detectable in 75 (89.3%) patients. The median number of FVH was 4 (IQR 2–7). Patients with FVH >4 presented with more severe strokes due to NIHSS (p = 0.021), had larger initial DWI lesions (p = 0.008), perfusion deficits (p = 0.001) and mismatch volumes/ratios (p = 0.005). The final infarct volume was larger (p = 0.005), and hemorrhagic transformation was more frequent (p = 0.029) in these patients. Conclusions: The presence of FVH indicates larger ischemic areas in brain parenchyma predominantly caused by proximal anterior circulation vessel occlusion. A high count of FVH might be a further surrogate marker for initial ischemic mismatch and stroke severity.
The burden of cerebrovascular disease (CVD) is huge and therapeutic options are limited. Physical activity is effective in preventing coronary heart and peripheral artery disease both experimentally and clinically. It is likely that the protective effects of exercise can be extended to both CVD and cognitive impairment. The pleiotropic protective and preventive mechanisms induced by physical activity include increased perfusion as well as mechanisms of collateral recruitment and neovascularization mediated by arterio- and angiogenesis. Physical activity increases the bioavailability of nitric oxide, bone marrow-derived CD34+ cells and growth factors, all of which promote neovascularization. Additionally, shear stress is discussed as a potential mechanism for vessel growth. Moreover, physical activity plays a role in endothelial function and cerebral autoregulation in small- and large-artery CVD. The vascular niche hypothesis highlights the complex interactions of neuro- and angiogenesis for regenerative and repair mechanisms in the human brain. Experimental and clinical studies demonstrate the positive impact of prior physical activity on stroke lesion size and on outcome after stroke. Clinical trials are necessary to further address the impact of physical activity on primary and secondary stroke prevention, outcome and cognitive function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.