The interaction between Phytophthora infestans (Mont.) de Bary and Solanum was examined cytologically using a diverse set of wild Solanum species and potato (S. tuberosum L.) cultivars with various levels of resistance to late blight. In wild Solanum species, in potato cultivars carrying known resistance (R) genes and in nonhosts the major defense reaction appeared to be the hypersensitive response (HR). In fully resistant Solanum species and nonhosts, the HR was fast and occurred within 22 h. This resulted in the death of one to three cells. In partially resistant clones, the HR was induced between 16 and 46 h, and resulted in HR lesions consisting of five or more dead cells, from which hyphae were occasionally able to escape to establish a biotrophic interaction. These results demonstrate the quantitative nature of the resistance to P. infestans. The effectiveness of the HR in restricting growth of the pathogen differed considerably between clones and correlated with resistance levels. Other responses associated with the defense reaction were deposition of callose and extracellular globules containing phenolic compounds. These globules were deposited near cells showing the HR, and may function in cell wall strengthening.
Knowing the extent and structure of genetic variation in germplasm collections is essential for the conservation and utilization of biodiversity in cultivated plants. Cucumber is the fourth most important vegetable crop worldwide and is a model system for other Cucurbitaceae, a family that also includes melon, watermelon, pumpkin and squash. Previous isozyme studies revealed a low genetic diversity in cucumber, but detailed insights into the crop's genetic structure and diversity are largely missing. We have fingerprinted 3,342 accessions from the Chinese, Dutch and U.S. cucumber collections with 23 highly polymorphic Simple Sequence Repeat (SSR) markers evenly distributed in the genome. The data reveal three distinct populations, largely corresponding to three geographic regions. Population 1 corresponds to germplasm from China, except for the unique semi-wild landraces found in Xishuangbanna in Southwest China and East Asia; population 2 to Europe, America, and Central and West Asia; and population 3 to India and Xishuangbanna. Admixtures were also detected, reflecting hybridization and migration events between the populations. The genetic background of the Indian germplasm is heterogeneous, indicating that the Indian cucumbers maintain a large proportion of the genetic diversity and that only a small fraction was introduced to other parts of the world. Subsequently, we defined a core collection consisting of 115 accessions and capturing over 77% of the SSR alleles. Insight into the genetic structure of cucumber will help developing appropriate conservation strategies and provides a basis for population-level genome sequencing in cucumber.
No abstract
Recent phylogenetic analyses of the nucleotide binding sites (NBS)-leucine-rich repeats (LRR) class of plant disease resistance (R) genes suggest that these genes are ancient and coexist next to susceptibility alleles at resistance loci. Another class of R genes encodes serine-threonine protein kinases related to Pto that were originally identified from wild relatives of tomato. In this study, we exploit the highly diverse genus Solanum to identify Pto-like sequences and test various evolutionary scenarios for Pto-like genes. Polymerase chain reaction amplifications with the use of primers that were developed on the basis of conserved and variable regions of Pto revealed an extensive Pto gene family and yielded 32 intact Pto-like sequences from six Solanum species. Furthermore, Pto-like transcripts were detected in the leaf tissue of all tested plants. The kinase consensus and autophosphorylation sites were highly conserved, in contrast to the kinase activation domain, which is involved in ligand recognition in Pto. Phylogenetic analyses distinguished nine classes of Pto-like genes and revealed that orthologs were more similar than paralogs, suggesting that the Pto gene family evolved through a series of ancient gene duplication events prior to speciation in Solanum. Thus, like the NBS-LRR class, the kinase class of R genes is highly diverse and ancient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.