The validity of the free-ion model (FIM) for the element lutetium (Lu), a member of the lanthanides, was assessed in experiments with the bacterium Vibrio fischeri. The FIM is mainly based on divalent metals and synthetic ligands and has not yet been validated for the trivalent lanthanides. The bioluminescence response of V. fischeri was studied at different Lu concentrations in the presence and absence of natural and synthetic organic ligands [citrate, malate, oxalate, acetate, ethylenediaminetetraacetate (EDTA), and nitrilotriacetate (NTA)]. All ligands were tested separately to ensure that their concentrations would not cause adverse effects themselves. Free Lu 3+ concentrations were calculated with a speciation program, after extension of its database with the relevant Lu equilibria. The results confirmed the FIM for Lu: that is, in contrast to total dissolved Lu concentrations, free Lu 3+ concentrations had an apparent relationship with the response of V. fischeri. However, a contribution of minor inorganic Lu complexes cannot be ruled out. In the presence of malate and oxalate, the EC 50 for Lu 3+ decreased faster in time than for the other ligands, indicating lower elimination rates. With an EC 50 of 1.57 µM, Lu 3+ is more toxic than La 3+ , Cd 2+ , or Zn 2+ and approximately equally as toxic as Cu 2+ . Although the pH increased slightly during the experiments, it was shown that the influence of pH on Lu speciation was limited.
Groundwater samples were taken from seven bore holes at depths ranging from 2 to 41m nearby drinking water pumping station Vierlingsbeek, The Netherlands and analysed for Y, La, Ce, Pr, Nd, Sm and Eu. Shale-normalized patterns were generally flat and showed that the observed rare earth elements (REE) were probably of natural origin. In the shallow groundwaters the REEs were light REE (LREE) enriched, probably caused by binding of LREEs to colloids. To improve understanding of the behaviour of the REE, two approaches were used: calculations of the speciation and a statistical approach. For the speciation calculations, complexation and precipitation reactions including inorganic and dissolved organic carbon (DOC) compounds, were taken into account. The REE speciation showed REE(3+), REE(SO(4))(+), REE(CO(3))(+) and REE(DOC) being the major species. Dissolution of pure REE precipitates and REE-enriched solid phases did not account for the observed REEs in groundwater. Regulation of REE concentrations by adsorption-desorption processes to Fe(III)(OH)(3) and Al(OH)(3) minerals, which were calculated to be present in nearly all groundwaters, is a probable explanation. The statistical approach (multiple linear regression) showed that pH is by far the most significant groundwater characteristic which contributes to the variation in REE concentrations. Also DOC, SO(4), Fe and Al contributed significantly, although to a much lesser extent, to the variation in REE concentrations. This is in line with the calculated REE-species in solution and REE-adsorption to iron and aluminium (hydr)oxides. Regression equations including only pH, were derived to predict REE concentrations in groundwater. External validation showed that these regression equations were reasonably successful to predict REE concentrations of groundwater of another drinking water pumping station in quite different region of The Netherlands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.