Cell-surface proteoglycans participate in several biological functions such as cell cell and cell-matrix interactions, cell adhesion, the binding to various growth factors as co-receptors and repair. To understand better the expression and distribution of cell-surface proteoglycans in the periodontal tissues, an immunohistochemical evaluation of the normal Lewis rat molar periodontium using panels of antibodies for syndecan-1, -2, -4, glypican and betaglycan was carried out. Our results demonstrated the expression and distribution of all proteoglycans in the suprabasal gingival epithelium, soft and hard connective tissues. Both cellular and matrix localization was evident within the various periodontal compartments. The presence of these cell-surface proteoglycans indicates the potential for roles in the process of tissue homeostasis, repair or regeneration in periodontium of which each function requires further study.
Cell-surface proteoglycans participate in several biological functions including interactions with adhesion molecules, growth factors and a variety of other effector molecules. Accordingly, these molecules play a central role in various aspects of cell-cell and cell-matrix interactions. To investigate the expression and distribution of the cell surface proteoglycans, syndecan-1 and -2, during periodontal wound healing, immunohistochemical analyses were carried out using monoclonal antibodies against syndecan-1, or -2 core proteins. Both syndecan-1 and -2 were expressed and distributed differentially at various stages of early inflammatory cell infiltration, granulation tissue formation, and tissue remodeling in periodontal wound healing. Expression of syndecan-1 was noted in inflammatory cells within and around the fibrin clots during the earliest stages of inflammatory cells infiltration. During granulation tissue formation it was noted in fibroblast-like cells and newly formed blood vessels. Syndecan-1 was not seen in newly formed bone or cementum matrix at any of the time periods studied. Syndecan-1 expression was generally less during the late stages of wound healing but was markedly expressed in cells that were close to the repairing junctional epithelium. In contrast, syndecan-2 expression and distribution was not evident at the early stages of inflammatory cell infiltration. During the formation of granulation tissue and subsequent tissue remodeling, syndecan-2 was expressed extracellularly in the newly formed fibrils which were oriented toward the root surface. Syndecan-2 was found to be significantly expressed on cells that were close to the root surface and within the matrix of repaired cementum covering root dentin as well as at the alveolar bone edge. These findings indicate that syndecan-1 and -2 may have distinctive functions during wound healing of the periodontium. The appearance of syndecan-1 may involve both cell-cell and cell-matrix interactions, while syndecan-2 showed a predilection to associate with cell-matrix interactions during hard tissue formation.
Cell surface proteoglycans are known to interact with adhesion molecules, growth factors and a variety of other effector molecules implying their central role in various aspects of cell-cell and cell-matrix interactions. To investigate the expression and distribution of the cell surface proteoglycans syndecan-1 and -2, the developing periodontal tissues of 3-, 5-, and 8-wk-old male Lewis rats, were stained by specific monoclonal antibodies against syndecan-1, or -2 core protein, using immunohistochemical techniques. The results demonstrated that syndecan-1 and -2 were expressed and distributed differentially in several compartments of the developing periodontal tissues at different ages. Expression of syndecan-1 was noted in areas of intense cellular activity such as the developing apical root tip of the tooth and at the crestal bone where new bone formation was taking place. In contrast, syndecan-2 expression and distribution did not exhibit the same patterns as syndecan-1. Syndecan-2 showed significant differences of distribution in hard tissues undergoing maturation at different ages. These findings indicate that syndecan-1 and -2 may have distinctive functions during morphogenesis, organogenesis and differentiation of the periodontium.
Cell surface proteoglycans are known to be involved in many functions including interactions with components of the extracellular microenvironment and serve to influence cell shape, adhesion, proliferation, and differentiation. They also can act as co-receptors, to help bind and modify the action of various growth factors and cytokines. Despite their strategic location and relevance to cell function, few studies have considered the nature of the cell surface proteoglycans associated with cells of the periodontium. Due to the structural complexity and multiplicity of cell types in the periodontium, we have selected three different cell lines (gingival connective tissue fibroblast, periodontal ligament fibroblast, and osteoblast) which each represent the unique functions within the periodontium to study the expression of cell surface proteoglycans. We hypothesized that a number of cell surface proteoglycans will be expressed by human periodontal cells and these may be related to the source and function of the cell. Western blotting and RT-PCR methods were used to study the expression of five cell surface proteoglycans (syndecan-1, -2, -4, glypican and betaglycan) in three cell lines of human periodontal cells in vitro. Our results demonstrated the expression of protein cores for syndecan-1 (43 kDa), syndecan-2 (48 kDa), syndecan-4 (35 kDa), glypican (64 kDa), and betaglycan (100-110 kDa). RT-PCR results confirmed that all of these cells produced mRNA for the cell surface proteoglycans under study, of which syndecan-2 showed a significant difference in expression between the periodontal ligament fibroblasts, gingival fibroblasts and osteoblasts. We conclude that the presence of specific cell surface proteoglycans on periodontal cells implies a likely role for these molecules in cell-cell, cell-matrix interactions involved in periodontal disease and/or regeneration of the periodontium, of which they may have distinctive functions related to the source and function of these cells.
Cell-surface proteoglycans have been known to be involved in many functions including interactions with components of the extracellular microenvironment, and act as co-receptors which bind and modify the action of various growth factors and cytokines. The purpose of this study was to determine the regulation by growth factors and cytokines on cell-surface proteoglycan gene expression in cultured human periodontal ligament (PDL) cells. Subconfluent, quiescent PDL cells were treated with various concentrations of serum, bFGF, PDGF-BB, TGF-beta1, IL-beta1, and IFN-gamma. RT-PCR technique was used, complemented with Northern blot for syndecan-1, to examine the effects of these agents on the mRNA expression of five cell-surface proteoglycans (syndecan-1, syndecan-2, syndecan-4, glypican and betaglycan). Syndecan-1 mRNA levels increased in response to serum, bFGF and PDGF-BB, but decreased in response to TGF-beta1, IL-1beta and IFN-gamma. In contrast, syndecan-2 mRNA levels were upregulated by TGF-beta1 and IL-1beta stimulation, but remained unchanged with the other agents. Betaglycan gene expression decreased in response to serum, but was upregulated by TGF-beta1 and unchanged by the other stimulants. Additionally, syndecan-4 and glypican were not significantly altered in response to the regulator molecules studied, with the exception that glypican is decreased in response to IFN-gamma. These data demonstrate that the gene expression of the five cell-surface proteoglycans studied is differentially regulated in PDL cells lending support to the notion of distinct functions for these cell-surface proteoglycans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.