Vitellogenin (Vg) and its receptor (VgR) play a key role in the reproductive process and development of insects. Aphids are a group of high-fecundity insect species with pseudoplacental viviparity, but the roles of their Vg and VgR genes have not been investigated yet. The brown citrus aphid, Aphis (Toxoptera) citricidus, is a major insect pest of citrus and the main vector of Citrus tristeza closterovirus. In this study, we identified and characterized these two genes, designated as AcVg and AcVgR, from the brown citrus aphid. We found that AcVg has lost the DUF1943 domain that is present in other insect Vgs. Silencing of AcVg and AcVgR led to a delay in the nymph-adult transition, a prolonged prereproductive period, and a shortened reproductive period, which in turn resulted in slower embryonic development and fewer new-born nymphs. Interestingly, silencing of AcVg decreased the transcript level of AcVgR, but silencing of AcVgR resulted in increased transcript levels of AcVg. In addition, silencing of Vg/VgR had similar phenotypes between alate and apterous morphs, suggesting that the functions of these two genes are the same in the two wing morphs of the aphid. Our results demonstrate that Vg and VgR are involved in various aspects of aphid development and reproduction. Further studies on the synthesis of Vg could help to elucidate the reproductive mechanism and provide information that will be useful for developing new pest control strategies.
The soybean aphid, Aphis glycines Matsumura, is a recent invasive pest of soybean in North America. Currently, much research is focused on developing and characterizing soybean cultivars expressing host-plant resistance. During the initial phases of host-plant resistance screening, many of these studies use soybean aphid laboratory populations. Previous studies in other systems have documented substantial differences among laboratory and field populations. Whether or not this pattern exists in A. glycines is unknown, but it is extremely important when estimating the level of selection and virulence to host-plant resistant soybeans. In this study, we used seven microsatellite markers to estimate and compare genetic diversity and differentiation among five laboratory and 12 field populations. Our results indicate that soybean aphid laboratory populations are severely lacking in genotypic diversity and show extreme genetic differentiation among each other and to field populations. Continued use of laboratory populations for initial soybean aphid resistance screening could lead to erroneous estimations of the potential success for host-plant resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.