Combining the projection method of Solodov and Svaiter with the Liu-Storey and Fletcher Reeves conjugate gradient algorithm of Djordjević for unconstrained minimization problems, a hybrid conjugate gradient algorithm is proposed and extended to solve convex constrained nonlinear monotone equations. Under some suitable conditions, the global convergence result of the proposed method is established. Furthermore, the proposed method is applied to solve the 𝓁 1 -norm regularized problems to restore sparse signal and image in compressive sensing. Numerical comparisons of the proposed algorithm versus some other conjugate gradient algorithms on a set of benchmark test problems, sparse signal reconstruction and image restoration in compressive sensing show that the proposed scheme is computationally more efficient and robust than the compared schemes.
In this article, we focus on improving the sub-gradient extra-gradient method to find a solution to the problems of pseudo-monotone equilibrium in a real Hilbert space. The weak convergence of our method is well-established based on the standard assumptions on a bifunction. We also present the application of our results that enable to solve numerically the pseudo-monotone and monotone variational inequality problems, in addition to the particular presumptions required by the operator. We have used various numerical examples to support our well-proved convergence results, and we can show that the proposed method involves a considerable influence over-running time and the total number of iterations.
In this paper, we study and investigate the ψ−Hilfer fractional differential equation with nonlocal multi‐point condition of the form:
eqnarrayleft center righteqnarray-1eqnarray-2eqnarray-3Da+q,p;ψu(t)=f(t,u(t),Da+q,p;ψu(t)),t∈[a,b],eqnarray-1eqnarray-2eqnarray-3Ia+1−r;ψu(a)=∑i=1mβiu(ηi),q≤r=q+p−qp<1,ηi∈[a,b],
where
0
The main objective of this article is to propose a new method that would extend Popov’s extragradient method by changing two natural projections with two convex optimization problems. We also show the weak convergence of our designed method by taking mild assumptions on a cost bifunction. The method is evaluating only one value of the bifunction per iteration and it is uses an explicit formula for identifying the appropriate stepsize parameter for each iteration. The variable stepsize is going to be effective for enhancing iterative algorithm performance. The variable stepsize is updating for each iteration based on the previous iterations. After numerical examples, we conclude that the effect of the inertial term and variable stepsize has a significant improvement over the processing time and number of iterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.