Cardiovascular disease (CVD), despite the significant advances in the diagnosis and treatments, still represents the leading cause of morbidity and mortality worldwide. In order to improve and optimize CVD outcomes, artificial intelligence techniques have the potential to radically change the way we practice cardiology, especially in imaging, offering us novel tools to interpret data and make clinical decisions. AI techniques such as machine learning and deep learning can also improve medical knowledge due to the increase of the volume and complexity of the data, unlocking clinically relevant information. Likewise, the use of emerging communication and information technologies is becoming pivotal to create a pervasive healthcare service through which elderly and chronic disease patients can receive medical care at their home, reducing hospitalizations and improving quality of life. The aim of this review is to describe the contemporary state of artificial intelligence and digital health applied to cardiovascular medicine as well as to provide physicians with their potential not only in cardiac imaging but most of all in clinical practice.
Massive pulmonary embolism (PE) is a severe condition that can potentially lead to death caused by right ventricular (RV) failure and the consequent cardiogenic shock. Despite the fact thrombolysis is often administrated to critical patients to increase pulmonary perfusion and to reduce RV afterload, surgical treatment represents another valid option in case of failure or contraindications to thrombolytic therapy. Correct risk stratification and multidisciplinary proactive teams are critical factors to dramatically decrease the mortality of this global health burden. In fact, the worldwide incidence of PE is 60-70 per 100,000, with a mortality ranging from 1% for small PE to 65% for massive PE. This review provides an overview of the diagnosis and management of this highly lethal pathology, with a focus on the surgical approaches at the state of the art.
BacKGrOUnd: new messenger rna (mrna) and adenovirus-based vaccines (adv) against coronavirus disease 2019 (cOvid-19) have entered large scale clinical trials. Since healthcare professionals (HcPs) and armed forces personnel (aFP) represent a high-risk category, they act as a suitable target population to investigate vaccine-related side effects, including headache, which has emerged as a common complaint. meTHOdS: We investigated the side-effects of cOvid-19 vaccines among HcPs and aFP through a 38 closed-question international survey. The electronic link was distributed via e-mail or via Whatsapp to more than 500 contacts. responses to the survey questions were analyzed with bivariate tests. RESULTS: A total of 375 complete surveys have been analyzed. More than 88% received an mRNA vaccine and 11% received AdV first dose. a second dose of mrna vaccine was administered in 76% of individuals. no severe adverse effects were reported, whereas moderate reactions and those lasting more than 1 day were more common with adv (P=0.002 and P=0.024 respectively). Headache was commonly reported regardless of the vaccine type, but less frequently, with shorter duration and lower severity that usually experienced by participants, without significant difference irrespective of vaccine type. cOncLUSiOnS: Both mrna and adv cOvid-19 vaccines were safe and well tolerated in a real-life subset of HcPs and aFP subjects.
Background. Infective endocarditis (IE) is a life-threatening disease. Its epidemiological profile has substantially changed in recent years although 1-year mortality is still high. Despite advances in medical therapy and surgical technique, there is still uncertainty on the best management and on the timing of surgical intervention. The objective of this review is to produce further insight into the short- and long-term outcomes of patients with IE, with a focus on those presenting cerebrovascular complications.
Mechanisms of exercise-induced muscle injury with etiopathogenesis and its consequences have been described; however, the impact of different intensities of exercise on the mechanisms of muscular injury development is not well understood. The aim of this study was to exploit the relationship between platelet activation, oxidative stress and muscular injuries induced by physical exercise in elite football players compared to amateur athletes. Oxidant/antioxidant status, platelet activation and markers of muscle damage were evaluated in 23 elite football players and 23 amateur athletes. Compared to amateurs, elite football players showed lower antioxidant capacity and higher oxidative stress paralleled by increased platelet activation and muscle damage markers. Simple linear regression analysis showed that sNOX2-dp and H2O2, sCD40L and PDGF-bb were associated with a significant increase in muscle damage biomarkers. In vitro studies also showed that plasma obtained from elite athletes increased oxidative stress and muscle damage in human skeletal muscle myoblasts cell line compared to amateurs’ plasma, an effect blunted by the NOX2 inhibitor or by the cell treatment with cocoa-derived polyphenols. These results indicate that platelet activation increased muscular injuries induced by oxidative stress. Moreover, NOX2 inhibition and polyphenol extracts treatment positively modulates redox status and reduce exercise-induced muscular injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.