Search-oriented conversational systems rely on information needs expressed in natural language (NL). We focus here on the understanding of NL expressions for building keywordbased queries. We propose a reinforcementlearning-driven translation model framework able to 1) learn the translation from NL expressions to queries in a supervised way, and, 2) to overcome the lack of large-scale dataset by framing the translation model as a word selection approach and injecting relevance feedback in the learning process. Experiments are carried out on two TREC datasets and outline the effectiveness of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.