The current work concentrated on the green synthesis of silver nanoparticles (AgNPs) through the use of aqueous Citruslimon zest extract, optimizing the different experimental factors required for the formation and stability of AgNPs. The preparation of nanoparticles was confirmed by the observation of the color change of the mixture of silver nitrate, after the addition of the plant extract, from yellow to a reddish-brown colloidal suspension and was established by detecting the surface plasmon resonance band at 535.5 nm, utilizing UV-Visible analysis. The optimum conditions were found to be 1 mM of silver nitrate concentration, a 1:9 ratio extract of the mixture, and a 4 h incubation period. Fourier transform infrared spectroscopy spectrum indicated that the phytochemicals compounds present in Citrus limon zest extract had a fundamental effect on the production of AgNPs as a bio-reducing agent. The morphology, size, and elemental composition of AgNPs were investigated by zeta potential (ZP), dynamic light scattering (DLS), SEM, EDX, X-ray diffraction (XRD), and transmission electron microscopy (TEM) analysis, which showed crystalline spherical silver nanoparticles. In addition, the antimicrobial and antioxidant properties of this bioactive silver nanoparticle were also investigated. The AgNPs showed excellent antibacterial activity against one Gram-negative pathogens bacteria, Escherichia coli, and one Gram-positive bacteria, Staphylococcus aureus, as well as antifungal activity against Candida albicans. The obtained results indicate that the antioxidant activity of this nanoparticle is significant. This bioactive silver nanoparticle can be used in biomedical and pharmacological fields.
Water-soluble polymer, cationic poly(N-[3-hexyldimethyl-aminopropyl]methacrylamide bromide) (PHDAPMAA), is synthesized by radical polymerization and studied in terms of its solubility, viscosity, surface tension and conductivity. Viscometry and surface tension measurements confirmed that intramolecular hydrophobic microdomains were formed by the pendent alkyl chains. Conductivity of cationic polymer in aqueous solution was determined. Variation of conductivity versus concentration in investigated system exhibits a typical polyelectrolyte behaviour.
Iodine transfer radical homo- and diblock copolymerization of N-[3-(dimethylamino)propyl] methacrylamide (DMAPMA) with methyl methacrylate (MMA) were carried out in the presence of iodine I2 and 2,2′-azobis(isobutyronitrile) (AIBN) as chain transfer agent and initiator, respectively. Using reverse iodine transfer polymerization (RITP) method based on the in situ generation of transfer agents using molecular iodine I2. The homopolymer and copolymer were characterized by FT-IR and 1H NMR. The self-assembly behaviours of diblock copolymer in water are studied by viscosity and tensiometry techniques. The water-soluble fraction of P(DMAPMA-b-MMA) block copolymer formed micelles which were investigated at 25°C in water at 0.2 mg.mL−1 concentration using a tensiometry device. Dynamic light scattering technique (DLS) was performed over a wide range of concentration to determine hydrodynamic size of the aggregates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.