Indonesia produced 48.8 Mt/year of Municipal Solid Waste (MSW) with populationnumber of 218.8 million and rate of waste generation 0.61 kg/cap/day. Most ofMSW (40%) are transported to the Solid Waste Disposal Site (TPA) in urban area.The landfill site which is unmanaged will become a source of the GHGs emission,mainly the methane emission. Based on the Indonesian population, using FODIPCC Tier-2 method, CH4 generated from MSW sector (landfill only) in 2006 is109.96 Gg CH4 and will be increased up to 259 Gg in 2010, 504 Gg in 2015 and1,065 Gg in 2025. The increase number of this CH4 emission is caused by theincrease of population number that will increase the waste production and alsoincrease the volume waste that is collected in the disposal area. The future scenarioby referring to the national strategic plan which is developed by the Public WorkDepartment is that the waste should be reduced from the source, so the totalvolume will be reduced by 20% in 2010. In 2015, refers to the MDGs target, 80% ofthe MSW in urban area and 50% of the MSW in rural area should be transported tothe final disposal site. As stated in Solid Waste Management Act No 18/2008 andin accordance with the raw water protection, improvement of landfill quality fromopen dumping to sanitary landfill or controlled landfill and development of regionallandfill are the priority programs with national financial support as an initial investment.
Keywords:characterization, production, organic, leachate, landfill ABSTRAKSalah satu hasil proses biodegradasi sampah di TPA adalah lindi yang merupakan polutan organik yang berbahaya bagi lingkungan karena berpotensi mencemari tanah dan air tanah. Penelitian ini bertujuan untuk mengetahui kuantitas dan kualitas lindi dari sampah di TPA Kaliwlingi Brebes melalui uji lisimeter. Kuantitas lindi penting untuk memperkirakan spesifikasi disain unit pengolahan termasuk metode pengolahannya. Sedangkan karakteristik lindi penting untuk menentukan efisiensi pengolahan atau target kadar polutan yang diinginkan agar sesuai standard baku mutu. Dari pengamatan diperoleh kuantitas lindi per massa sampah rata-rata mencapai 1.060 liter/kg, sedangkan nilai pH lindi rata-rata 7,6 atau cenderung alkaline. Dari data pengamatan, semakin tinggi kadar air akan semakin besar kuantitas lindi yang dihasilkan. Karakterisasi lindi terhadap parameter BOD 5 , COD, NH 3 -N dan TKN menghasilkan nilai yang bervariasi. Nilai rata-rata serta rentang minimal-maksimal yang didapat; BOD 5 90,7 mg/l (65 mg/l-130 mg/l), COD 9.679,7 mg/l (6.300 mg/l-12.200 mg/l), NH 3 -N 134,4 mg/l (80 mg/l-190 mg/l) dan TKN 672,5 mg/l (540 mg/l-890 mg/l). Rasio BOD 5 /COD sebesar 0,01 menunjukkan tingkat low biodegradability dalam materi organiknya, hal ini disebabkan waktu pengamatan yang relatif singkat dan proses degradasi biologis masih berlangsung.Nilai rasio BOD 5 /COD yang diperoleh belum menunjukkan nilai yang representatif untuk sampah di TPA Kaliwlingi. Hasil dari karakterisasi lindi untuk beberapa parameter menunjukkan bahwa biomassa atau sampah yang diteliti tergolong usia muda dan masih dalam proses dekomposisi.
After ratifying the Kyoto Protocol, Indonesia has obligation to make report on National GHGs emission for UNFCCC. There are some studies at national level related to GHGs inventory. In this study we calculated GHG (CO2 and CH4) emissions from 5 (five) sectors i.e forestry, energy, industry, agriculture and waste. Calculation use 2006 IPCC method with local values for verification or enhanced the Tier of method. The local values are, forestry allometric equation, emission factor of paddy field, generation and composition of municipal solid waste, solid waste management as well. Calculation result of GHGs emission in this study is 827,058 Gg/year in the term of CO2 equivalent. This numbers isestimated arround 60% of the realistic numbers due to the accuracy of the transportation data and unaccounted peat fire data in the study. Carbon emission from peat fire is the biggest emission. From all sector has calculated, forestry sector is the biggest CO2e emmitor with contribute arround 58%, follow energy sector (25%), agriculture (8% ),industry sector (6%), and waste sector (3%). The proportion of distribution each sector can change if the data more broad the calculation include more detail in sub sectors.Key words : GHGs Emissions, Local Values, Sector Contribution
Leachate is defined as a liquid, which flows through waste and extracts suspended material or their suspension. In most landfill, leachate is consist of liquids that go into the landfill, which originated from outside the landfill, such as surface drainage, rain water, ground water, water from spring water and other liquids which produced from waste decomposition. The existence of pollutant material or minerals in water body that is originated from leachate will propose the growth of microorganisms, which are harmful for human health and reduce the aesthetic. Leachate handling could be done with several methods, such as: utilization of hydrolic characteristics by ground water adjustment, thus the leachate flows would not go into the direction of ground water. Another way of leachate handling are: landfill isolation, in order to prevent the inflow of external water and the outflow of leachate water; site selection of an area, which has a good capability of pollutant neutralization; leachate recirculation to be redirected to the solid waste pile; flowing the leachate to domestic waste treatment system and leachate processing with a certain system. Some processing techniques that are often to be used are: physical-chemical processing, such as coagulation-flocculation-settling; aerobic processing (activated sludge, stabilization pond or aeration pond); anaerobic processing, such as stabilization pond and utilization of sorption characteristics, such as active carbon. The aerobic stabilization pond system is suitable for Indonesian condition due to the availability of sunlight, simple, relatively cheap and their capability of BOD reduction above of 90% and COD reduction of above 80%.Kata Kunci : Leachate, TPA sampah, teknologi pengolahan.
The problem for big cities in implementing the MSW disposal method is the land availability. Hierarchically, a suitable method for solving this condition is not to dispose the MSW into the landfill but to treat it in the thermal processing, such as incineration. The bonus of this incineration is the heat dissipation that can be utilized to generate electricity. Burning MSW through incinerator that converts into energy is often called a Waste to Energy (WtE) or PLTSa. Beside the benefit of the high temperature flue gas that can produce electricity, PLTSa also emits major pollutants in the flue gas such as particulates, SO2, NOx, CO, HCl, dioxins and furans. In order to meet the emission standards, the PLTSa design has to be equipped with APCD’s such as cyclone, semi-dry scrubber and bag filter. ID fan withdraws the flue gas into the chimney before discharging it into the ambient air through the top exit of chimney. The main parameters in the design of the ID fan and chimney are the quantity, quality and temperature of the flue gas as well as the environmental parameters, such as air temperature, atmospheric stability, wind speed and direction. The design of the chimney was carried out with a technical calculation approach, simulation of Gaussian dispersion model and the compliance of related regulations from the MoEF. In the design of PLTSa with a waste capacity of 350 tons/day, specification of the stack is 2.02 m diameter and the 70 m height whereas ID fan is 70,000 cfm flue gas flowrate, 400 BHP power, 80% mechanical efficiency and 25 inch H2O pressure pump.Keywords: Waste-to-energy, flue gas, ID fan, chimneyABSTRAKSalah satu masalah bagi kota-kota besar dalam menerapkan metode pengolahan sampah adalah ketersediaan lahan. Secara hierarkis metode yang mampu memenuhi kondisi ini adalah pengolahan dengan metode termal sekaligus memanfaatkan buangan panas yang ada untuk membangkitkan energi listrik. Pembakaran sampah dengan insinerator yang merubah sampah menjadi energi ini sering juga disebut Pembangkit Listrik Tenaga Sampah (PLTSa). Salah satu hasil samping PLTSa adalah flue gas yang temperaturnya tinggi serta mengandung polutan utama seperti partikulat, SO2, NOx dan CO. Agar memenuhi baku mutu emisi, rancangan PLTSa dalam studi ini dilengkapi dengan unit cyclone, semi dry scrubber, bag filter dan ID fan serta cerobong sebagai unit pembuangan akhir flue gas. Sebagai unit akhir pembuang flue gas ke lingkungan, peran cerobong sangat penting sehingga perlu beberapa pendekatan dalam perancangan. Parameter desain utama dalam perancangan cerobong adalah kuantitas, kualitas dan suhu dari flue gas serta parameter meterologis lingkungan seperti suhu udara, stabilitas atmosfer, kecepatan dan arah angin. Dalam perancangan cerobong pada studi ini dilakukan dengan pendekatan perhtiungan teknis, simulasi model dispersi Gaussian serta peraturan terkait dari Kementerian Lingkungan Hidup dan Kehutanan. Dalam rancangan PLTSa dengan kapasitas olah sampah 350 ton/hari ditetapkan diameter cerobong 2,05 m dengan tinggi 70 m, serta diperlukan ID fan sebagai pendorong flue gas dengan spesifikasi Q = 70.000 cfm, BHP = 400, mechanical efficiency 80% dan static pressure pompa = 25 inch H2O.Kata kunci: Sampah menjadi energi, gas buang, ID fan, cerobong
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.