Geckos are exceptional in their ability to climb rapidly up smooth vertical surfaces. Microscopy has shown that a gecko's foot has nearly five hundred thousand keratinous hairs or setae. Each 30-130 microm long seta is only one-tenth the diameter of a human hair and contains hundreds of projections terminating in 0.2-0.5 microm spatula-shaped structures. After nearly a century of anatomical description, here we report the first direct measurements of single setal force by using a two-dimensional micro-electromechanical systems force sensor and a wire as a force gauge. Measurements revealed that a seta is ten times more effective at adhesion than predicted from maximal estimates on whole animals. Adhesive force values support the hypothesis that individual seta operate by van der Waals forces. The gecko's peculiar behaviour of toe uncurling and peeling led us to discover two aspects of setal function which increase their effectiveness. A unique macroscopic orientation and preloading of the seta increased attachment force 600-fold above that of frictional measurements of the material. Suitably orientated setae reduced the forces necessary to peel the toe by simply detaching above a critical angle with the substratum.
Dipterous insects (the true flies) have a sophisticated pair of equilibrium organs called halteres that evolved from hind wings. The halteres are sensitive to Coriolis forces that result from angular rotations of the body and mediate corrective reflexes during flight. Like the aerodynamically functional fore wings, the halteres beat during flight and are equipped with their own set of control muscles. It is shown that motoneurons innervating muscles of the haltere receive strong excitatory input from directionally sensitive visual interneurons. Visually guided flight maneuvers of flies may be mediated in part by efferent modulation of hard-wired equilibrium reflexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.