Canids, particularly dogs, constitute the major source of cystic echinococcosis (CE) infection to humans, with the majority of cases being caused by Echinococcus granulosus (G1 genotype). Canine echinococcosis is an asymptomatic disease caused by adult tapeworms of E. granulosus sensu lato (s.l.). Information on the population structure and genetic variation of adult E. granulosus is limited. Using sequenced data of the mitochondrial cytochrome c oxidase subunit 1 (cox1) we examined the genetic diversity and population structure of adult tapeworms of E. granulosus (G1 genotype) from canid definitive hosts originating from various geographical regions and compared it to that reported for the larval metacestode stage from sheep and human hosts. Echinococcus granulosus (s.s) was identified from adult tapeworm isolates from Kenya, Libya, Tunisia, Australia, China, Kazakhstan, United Kingdom and Peru, including the first known molecular confirmation from Gaza and the Falkland Islands. Haplotype analysis showed a star-shaped network with a centrally positioned common haplotype previously described for the metacestode stage from sheep and humans, and the neutrality indices indicated population expansion. Low Fst values suggested that populations of adult E. granulosus were not genetically differentiated. Haplotype and nucleotide diversities for E. granulosus isolates from sheep and human origin were twice as high as those reported from canid hosts. This may be related to self-fertilization of E. granulosus and/or to the longevity of the parasite in the respective intermediate and definitive hosts. Improved nuclear single loci are required to investigate the discrepancies in genetic variation seen in this study.
A male resident in Vanuatu with prior history of employment as a hunt kennel-man in England (1980England ( -2001 was surgically treated for the removal of a hydatid cyst subsequently confirmed as Echinococcus granulosus (G1 genotype). This is the first human molecularly identified CE case reported from the UK and a first in a fox-hound handler and indicates a general neglected occupational risk.
A total of eight foxhound packs in England and Wales were screened for Echinococcus species using a genus-specific coproantigen ELISA and for Echinococcus granulosus sensu lato and Echinococcus equinus by coproPCR. Main screening (n = 364 hounds) occurred during 2010-2011 wherein a quarter (25.6%) of the foxhound fecal samples tested were Echinococcus coproantigen-positive (93/364). In total, five of eight (62.5%) hunts screened had coproantigen-positive hounds; coproantigen prevalence for individual foxhound packs ranged from 0 to 61.2% and was shown to be >30% in three hunts (in counties of Powys, Wales and Northumberland, England). Foxhound fecal samples from six of the eight tested hunts (four Welsh and two English hunts) were positive by coproPCR for E. granulosus s.l (including one sequence confirmation of E. granulosus sensu stricto) and E. equinus DNA. Analysis of hunt questionnaire data suggested that there was an association between poor foxhound husbandry, especially feeding practices and Echinococcus coproantigen prevalence. Clearer guidelines regarding the risk of canine echinococcosis are required for safe management of foxhound hunts in England and Wales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.