Degradation of RBM39 by indisulam leads to exceptional response in high-risk neuroblastoma.
The pivotal role of cancer initiating stem cells (CSCs) in tumor initiation, growth, metastasis and drug resistance has led to the postulation of a ‘total cancer therapy’ paradigm, which involves targeting both cancer cells and CSCs for effective therapy. However, the progress in identifying drugs for total cancer therapy has been limited. Herein, we show for the first time that mithramycin A (Mit-A) can successfully inhibit CSC proliferation, in addition to inhibiting bulk cancer cells in a model of colorectal cancer (CRC), the second leading cause of death among men and women in the United States. To this end, a polymeric nanofiber scaffold culture system was established to develop 3D tumor organoids (tumoroids) from CRC cell lines such as HT29, HCT116, KM12, CT26 and MC38 as well as ex vivo mouse tumors. These tumoroids possessed increased expression of CSC markers and transcription factors, expanded the number of CSCs in culture and increased CSC functional properties measured by aldehyde dehydrogenase activity. Screening of an NCI library of FDA approved drugs led to the identification of Mit-A as a potential total cancer therapy drug. In both sphere and tumoroid culture, Mit-A inhibits cancer growth by reducing the expression of cancer stemness markers. In addition, Mit-A inhibits the expression of SP1, a previously known target in CRCs. Moreover, Mit-A significantly reduces growth of tumoroids in ex vivo cultures and CRC tumor growth in vivo. Finally, a dose-dependent treatment on CRC cells indicate that Mit-A significantly induces the cell death and PARP-cleavage of both CSC and non-CSC cells. Taken together the results of these in vitro, ex vivo and in vivo studies lead to the inference that Mit-A is a promising drug candidate for total cancer therapy of CRCs.
Obesity is a pandemic and major risk factor for cancers. The reduction of obesity would have been an effective strategy for cancer prevention, but the reality is that worldwide obesity has kept increasing for decades, remaining a major avoidable cancer risk secondary only to smoke. The present studies suggest that vitamin D may be an effective agent to reduce obesity-associated cancer risks in women. Molecular analyses showed that leptin increased human telomerase reverse transcriptase (hTERT) mRNA expression and cell growth through estrogen receptor alpha (ERα) activation in ovarian cancer (OCa) cells, which was suppressed by 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3]. The suppression was compromised when miR-498 induction by the hormone was depleted with miRNA sponges. In mice, high-fat diet (HFD) stimulation of ovarian tumor growth was remarkably suppressed by 1,25(OH)2D3 analogue EB1089, which was also compromised by miR-498 sponges. EB1089 did not alter HFD-induced increase in serum leptin levels but increased miR-498 and decreased the diet-induced hTERT expression in tumors. Quantitative RT-PCR (qRT-PCR) analyses revealed an inverse correlation between hTERT mRNA and miR-498 in response to 1,25(OH)2D3 in estrogen-sensitive ovarian, endometrial and breast cancers. The studies suggest that miR-498-mediated hTERT down regulation is a key event mediating the anti-leptin activity of 1,25(OH)2D3 in estrogen-sensitive tumors in women.
Fe65 is a brain-enriched adaptor protein known for its role in the action of the Aβ amyloid precursor protein in neuronal cells and Alzheimer’s disease, but little is known about its functions in cancer cells. The present study documents for the first time a role of Fe65 in suppressing breast cancer cell migration and invasion. Mechanistic studies suggest that the suppression is mediated through its phosphotyrosine binding domain 1 that mediates the recruitment of Tip60 to cortactin to stimulate its acetylation. The studies identify the Tip60 acetyltransferase as a cytoplasmic drug target for the therapeutic intervention of metastatic breast cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.