Soils are vital for supporting food security and other ecosystem services. Climate change can affect soil functions both directly and indirectly. Direct effects include temperature, precipitation, and moisture regime changes. Indirect effects include those that are induced by adaptations such as irrigation, crop rotation changes, and tillage practices. Although extensive knowledge is available on the direct effects, an understanding of the indirect effects of agricultural adaptation options is less complete. A review of 20 agricultural adaptation case‐studies across Europe was conducted to assess implications to soil threats and soil functions and the link to the Sustainable Development Goals (SDGs). The major findings are as follows: (a) adaptation options reflect local conditions; (b) reduced soil erosion threats and increased soil organic carbon are expected, although compaction may increase in some areas; (c) most adaptation options are anticipated to improve the soil functions of food and biomass production, soil organic carbon storage, and storing, filtering, transforming, and recycling capacities, whereas possible implications for soil biodiversity are largely unknown; and (d) the linkage between soil functions and the SDGs implies improvements to SDG 2 (achieving food security and promoting sustainable agriculture) and SDG 13 (taking action on climate change), whereas the relationship to SDG 15 (using terrestrial ecosystems sustainably) is largely unknown. The conclusion is drawn that agricultural adaptation options, even when focused on increasing yields, have the potential to outweigh the negative direct effects of climate change on soil degradation in many European regions.
The crop yield depends on numerous weather factors, but mainly on the rainfall pattern and course of air temperature during vegetation period. Investigating the dependence of yields on rainfall, apart from its amount, there also should be taken into account dry spell periods. The two-state Markov chain was considered as a precipitation pattern in the investigation, since it is generally recognized as a simple and effective model of the precipitation occurrence. Based on the daily precipitation totals from the period 1971—2013, the Markov chain was designated. The data were derived from a measuring point of the University of Science and Technology in Bydgoszcz, Poland. As one of the objectives was to determine the order of the Markov chain examined describing the change of precipitation in subsequent days. Another aim was to investigate rainfall dependencies on a month of a year. An analysis of this data leads to the conclusion that the chain is second order. This is confirmed by the two criteria used: BIC (Bayesian Information Criteria) and AIC (Akaike Information Criteria). The research regarded the precipitation volume dependence on a month of the year.
Climate change scenarios suggest that long periods without rainfall will occur in the future often causing instability of the agricultural products market. Th e aim of the research was to build a model describing the amount of precipitation and droughts for forecasting crop yields in the future. In this study, the authors analysed a non-standard mixture of gamma and one point distributions as the model of rainfall. On the basis of the rainfall data, one can estimate the parameters of the distribution. Th e parameter estimators were constructed using the method of the maximum likelihood. Th e obtained rainfall data allow confi rming the hypothesis of the adequacy of the proposed rainfall models. Long series of droughts allow one to determine the probabilities of adverse phenomena in agriculture. Based on the model, the yields of barley in the years 2030 and 2050 were forecasted which can be used for the assessment of other crops productivity. Th e results obtained with this approach can be used to predict decreases in agricultural production caused by the prospective rainfall shortages. Th is will enable decision makers to shape eff ective agricultural policies in order to learn how to balance the food supplies and demands through an appropriate management of the stored raw food materials and the import/export policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.