BACKGROUND In Brazil, the Yellow Fever virus (YFV) is endemic in the Amazon, from where it eventually expands into epidemic waves. Coastal southeastern (SE) Brazil, which has been a YFV-free region for eight decades, has reported a severe sylvatic outbreak since 2016. The virus spread from the north toward the south of the Rio de Janeiro (RJ) state, causing 307 human cases with 105 deaths during the 2016-2017 and 2017-2018 transmission seasons. It is unclear, however, whether the YFV would persist in the coastal Atlantic Forest of RJ during subsequent transmission seasons. OBJECTIVES To conduct a real-time surveillance and assess the potential persistence of YFV in the coastal Atlantic Forest of RJ during the 2018-2019 transmission season. METHODS We combined epizootic surveillance with fast diagnostic and molecular, phylogenetic, and evolutionary analyses. FINDINGS Using this integrative strategy, we detected the first evidence of YFV re-emergence in the third transmission season (2018-2019) in a dying howler monkey from the central region of the RJ state. The YFV detected in 2019 has the molecular signature associated with the current SE YFV outbreak and exhibited a close phylogenetic relationship with the YFV lineage that circulated in the same Atlantic Forest fragment during the past seasons. This lineage circulated along the coastal side of the Serra do Mar mountain chain, and its evolution seems to be mainly driven by genetic drift. The potential bridge vector Aedes albopictus was found probing on the recently dead howler monkey in the forest edge, very close to urban areas. MAIN CONCLUSIONS Collectively, our data revealed that YFV transmission persisted at the same Atlantic Forest area for at least three consecutive transmission seasons without the need of new introductions. Our real-time surveillance strategy permitted health authorities to take preventive actions within 48 h after the detection of the sick non-human primate. The local virus persistence and the proximity of the epizootic forest to urban areas reinforces the concern with regards to the risk of reurbanisation and seasonal re-emergence of YFV, stressing the need for continuous effective surveillance and high vaccination coverage in the SE region, particularly in RJ, an important tourist location.
BackgroundWe identified dengue transmission areas by using the Geographic Information Systems located at local surveillance units of the Itaboraí municipality in state of Rio de Janeiro. We considered the association among the house infestation index, the disease incidence, and sociodemographic indicators during a prominent dengue outbreak in 2007 and 2008.MethodsIn this ecological study, the Local Surveillance Units (UVLs) of the municipality were used as spatial pattern units. For the house analysis, we used the period of higher vector density that occurred previous to the larger magnitude epidemic range of dengue cases. The average dengue incidence rates calculated in this epidemic range were smoothed using the Bayesian method. The associations among the House Infestation Index (HI), the Bayesian rate of the average dengue incidence, and the sociodemographic indicators were evaluated using a Pearson’s correlation coefficient. The areas that were at a higher risk of dengue occurrence were detected using a kernel density estimation with the kernel quartic function.ResultsThe dengue transmission pattern in Itaboraí showed that the increase in the vector density preceded the increase in incidence. The HI was positively correlated to the Bayesian dengue incidence rate (r = 0.641; p = 0.01). The higher risk areas were those that were close to the main highways. In the Kernel density estimation analysis, we observed that the regions that were at a higher risk of dengue were those that were located in the UVLs and had the highest population densities; these locations were typically located along major highways. Four nuclei were identified as epicenters of high risk.ConclusionsThe spatial analysis units used in this research, i.e., UVLs, served as a methodological resource for examining the compatibility of different information sources concerning the disease, the vector indices, and the municipal sociodemographic aspects and were arranged in distinct cartographic bases. Dengue is a multi-scale geographic phenomenon, and using the UVLs as analysis units made it possible to differentiate the dengue occurrence throughout the municipality. The methodological approach used in this research helped improve the Itaboraí municipality monitoring activities and the local territorial monitoring in other municipalities that are affected by this public health issue.
BackgroundAlthough malaria cases have substantially decreased in Southeast Brazil, a significant increase in the number of Plasmodium vivax-like autochthonous human cases has been reported in remote areas of the Atlantic Forest in the past few decades in Rio de Janeiro (RJ) state, including an outbreak during 2015–2016. The singular clinical and epidemiological aspects in several human cases, and collectively with molecular and genetic data, revealed that they were due to the non-human primate (NHP) parasite Plasmodium simium; however, the understanding of the autochthonous malarial epidemiology in Southeast Brazil can only be acquired by assessing the circulation of NHP Plasmodium in the foci and determining its hosts.MethodologyA large sampling effort was carried out in the Atlantic forest of RJ and its bordering states (Minas Gerais, São Paulo, Espírito Santo) for collecting and examining free-living NHPs. Blood and/or viscera were analyzed for Plasmodium infections via molecular and microscopic techniques.Principal findingsIn total, 146 NHPs of six species, from 30 counties in four states, were tested, of which majority were collected from RJ. Howler monkeys (Alouatta clamitans) were the only species found infected. In RJ, 26% of these monkeys tested positive, of which 17% were found to be infected with P. simium. Importantly, specific single nucleotide polymorphisms–the only available genetic markers that differentiate P. simium from P. vivax–were detected in all P. simium infected A. clamitans despite their geographical origin of malarial foci. Interestingly, 71% of P. simium infected NHPs were from the coastal slope of a mountain chain (Serra do Mar), where majority of the human cases were found. Plasmodium brasilianum/malariae was initially detected in 14% and 25% free-living howler monkeys in RJ and in the Espírito Santo (ES) state, respectively. Moreover, the malarial pigment was detected in the spleen fragments of 50% of a subsample comprising dead howler monkeys in both RJ and ES. All NHPs were negative for Plasmodium falciparum.Conclusions/SignificanceOur data indicate that howler monkeys act as the main reservoir for the Atlantic forest human malarial parasites in RJ and other sites in Southeast Brazil and reinforce its zoonotic characteristics.
Howler monkey capture is an arduous and expensive task requiring trained and specialized professionals. We compared strategies and methods to most efficiently capture Alouatta guariba clamitans in remnants of the Atlantic Forest in Rio de Janeiro and its bordering states of Minas Gerais and São Paulo. We tested whether or not the success of expeditions in the forest with anesthetic darts, nets, and baited traps differed with and without the support of an information network, a contact chain built with key institutions and inhabitants to continuously monitor howler monkey presence. The influence of forest conditions (vegetation type and fragment size) upon darting success was also evaluated. We captured 24 free-living A. guariba clamitans.No howler monkey was caught with traps, probably due to the predominantly folivore feeding to high local plant diversity providing a great variety of food options.Captures based on an information network were significantly more efficient in terms of numbers of caught monkeys than without it. Captures with darts were considerably more efficient when performed in semideciduous forests and small forest fragments as opposed to ombrophilous forests or large woods. Although we walked great distances within the forest searching for howler monkeys, all but one animal were captured at the forest fringes. Hindrances to search and the darting method in the Atlantic Forest, for example, the steep terrain, high tree canopies, hunt pressure, and low A. guariba clamitans population density, were mitigated with the use of the information network in this monkey capture. Moreover, the information network enhanced the surveillance of zoonotic diseases, which howler monkeys and other nonhuman primates are reservoirs in Brazil, such as malaria and yellow fever. K E Y W O R D S anesthetic dart, howler monkey, information network, trapping
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.