Cell migration is a fundamental biological process of key importance in health and disease. Advances in imaging techniques have paved the way to monitor cell motility. An ever-growing collection of computational tools to track cells has improved our ability to analyze moving cells. One renowned goal in the field is to provide tools that track cell movement as comprehensively and automatically as possible. However, fully automated tracking over long intervals of time is challenged by dividing cells, thus calling for a combination of automated and supervised tracking. Furthermore, after the emergence of various experimental tools to monitor cell-cycle phases, it is of relevance to integrate the monitoring of cell-cycle phases and motility. We developed CellMAPtracer, a multiplatform tracking system that achieves that goal. It can be operated as a conventional, automated tracking tool of single cells in numerous imaging applications. However, CellMAPtracer also allows adjusting tracked cells in a semiautomated supervised fashion, thereby improving the accuracy and facilitating the long-term tracking of migratory and dividing cells. CellMAPtracer is available with a user-friendly graphical interface and does not require any coding or programming skills. CellMAPtracer is compatible with two- and three-color fluorescent ubiquitination-based cell-cycle indicator (FUCCI) systems and allows the user to accurately monitor various migration parameters throughout the cell cycle, thus having great potential to facilitate new discoveries in cell biology.
The growing attention toward the benefits of single-cell RNA sequencing (scRNA-seq) is leading to a myriad of computational packages for the analysis of different aspects of scRNA-seq data. For researchers without advanced programing skills, it is very challenging to combine several packages in order to perform the desired analysis in a simple and reproducible way. Here we present DIscBIO, an open-source, multi-algorithmic pipeline for easy, efficient and reproducible analysis of cellular sub-populations at the transcriptomic level. The pipeline integrates multiple scRNA-seq packages and allows biomarker discovery with decision trees and gene enrichment analysis in a network context using single-cell sequencing read counts through clustering and differential analysis. DIscBIO is freely available as an R package. It can be run either in command-line mode or through a user-friendly computational pipeline using Jupyter notebooks. We showcase all pipeline features using two scRNA-seq datasets. The first dataset consists of circulating tumor cells from patients with breast cancer. The second one is a cell cycle regulation dataset in myxoid liposarcoma. All analyses are available as notebooks that integrate in a sequential narrative R code with explanatory text and output data and images. R users can use the notebooks to understand the different steps of the pipeline and will guide them to explore their scRNA-seq data. We also provide a cloud version using Binder that allows the execution of the pipeline without the need of downloading R, Jupyter or any of the packages used by the pipeline. The cloud version can serve as a tutorial for training purposes, especially for those that are not R users or have limited programing skills. However, in order to do meaningful scRNA-seq analyses, all users will need to understand the implemented methods and their possible options and limitations.
Few studies so far have investigated the impact of different cell migration traits on tumor progression. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the migration and invasion traits of Giantin depleted cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression.
Our understanding of how speed and persistence of cell migration affects the growth rate and size of tumors remains incomplete. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation, a phenomenon often linked to alterations of cell migration. Golgi fragmentation was induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the experimentally obtained migration and invasion traits of Giantin depleted breast cancer cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression.
Computational advancements in the last couple of decades have brought forth a new era of international large-scale assessments (ILSAs) in which the administration of computer-based tests is becoming the norm. Beyond collecting the correct/incorrect answers for each item, computerbased assessments are also able to collect a range of actions performed by the respondents in the computer testing application during the course of the test administration. Both respondents' actions-starting a unit, clicking a button, spending time until inputting or submitting an answer, and so forth-and their overall behavior-what they do with their keyboards, mice, and even their own eyes-are recorded as a new set of data called "process data", which are normally timestamped and can be stored in so-called log files. There may be plenty of useful insight into the respondent's cognitive process, and process data can potentially become a relevant element in the scoring process of an assessment, validate test score interpretations, to name a few possibilities for the analysis of such data. This chapter aims to contribute to the body of knowledge in this area by offering (1) an introduction to process data, what kind of data it contains, its relation to the cognitive process and how it can be organized into a proposed 6-layered ecological framework that facilitates its analysis; (2) a literature review of 37 seminal and state-of-the-art publications produced in the last decade on the topic, which are then analyzed both in their chronological perspective as well as in how they fit into the ecological framework; and (3) a discussion of the potential and limitations of using process data in the assessment framework, including a view of what could be the next steps in the analysis of process data from ILSAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.