A new triple voltage boosting switched-capacitor multilevel inverter (SCMLI) is presented in this paper. It can produce 13-level output voltage waveform by utilizing 12 switches, three diodes, three capacitors, and one DC source. The capacitor voltages are self-balanced as all the three capacitors present in the circuit are connected across the DC source to charge it to the desired voltage level for several instants in one fundamental cycle. A detailed comparative analysis is carried to show the advantages of the proposed topology in terms of the number of switches, number of capacitors, number of sources, total standing voltage (TSV), and boosting of the converter with the recently published 13-level topologies. The nearest level control (NLC)-based algorithm is used for generating switching signals for the IGBTs present in the circuit. The TSV of the proposed converter is 22. Experimental results are obtained for different loading conditions by using a laboratory hardware prototype to validate the simulation results. The efficiency of the proposed inverter is 97.2% for a 200 watt load.
Energy transition from traditional generation sources into new renewable energy generation has become essential for facing climate changes. However, increased penetration levels of renewable energy sources (RESs) make power systems subjected to low inertia problems. Moreover, the continuously growing numbers of electric vehicles (EVs) have made the substantial need for their contribution in power systems. Therefore, this paper proposes a combined fractional-order controller using the parallel combination of tiltintegral-derivative with filter (TIDF) and hybrid fractional-order (HybFO) controllers for robust frequency regulation in interconnected power systems. The proposed controller is advantageous in combining the merits of two fractional-order controllers that result in more robust and effective load frequency control (LFC) at wide range and different types of disturbances. Furthermore, a new application of marine predator optimization algorithm (MPA) is proposed for simultaneously determining the optimum controller parameters in the different power system areas. The existing EVs contribute in performing additional functionality in power systems. EVs help in damping out the frequency and tie-line power oscillations in the proposed work. The two-area interconnected power system is selected as a case study with the installed photovoltaic (PV), and wind generations in addition to distributed EVs among areas. The obtained results show the superiority and suitability of the proposed controller over the traditional controllers in the literature. Additionally, the effectiveness of the MPA is validated and compared with recent meta-heuristic optimization algorithms.INDEX TERMS Electric vehicles (EVs), interconnected power systems, load frequency control (LFC), marine predator optimization algorithm (MPA), renewable energy sources (RESs).
An 11-level switched-capacitor multilevel inverter (SCMLI) with 2.5 times boosting feature is presented in this paper. It can produce an 11-level output voltage waveform by utilizing 14 switches, 3 capacitors, 2 diodes, and 1 DC source. Only nine driver circuits are needed as the topology has three pairs of complementary switches and two bidirectional switches. It has inherent capacitor self-balancing property as the capacitors are connected across the DC voltage source during several states within a fundamental cycle to charge the capacitors to the input voltage. A detailed comparison shows the effectiveness of the proposed topology in terms of the number of switches, number of capacitors, number of sources, total standing voltage (TSV), efficiency, and boosting ability with the state-of-art recently proposed circuits. Subsequently, the performance of the proposed SCMLI is validated experimentally utilizing the nearest level control (NLC), a fundamental frequency-based switching technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.