Distribution System Reconfiguration (DSR) and Optimal Capacitor Placement (OCP) are the most alternative techniques for increasing the power system generation and covering the growth of power demands. These techniques reduce the Radial Distribution System (RDS) losses and enhance the voltage profile. Combining both techniques gives better performance than using the individual technique. In this paper, two operation modes were implemented. First, the individual mode of OCP is applied. Second, the dual mode of DSR after OCP process is applied. Multiobjective functions with considering the weighting factors are used for minimizing real losses, improving voltage profile, and increasing saving cost. The optimal selections of open switches, location, and size of capacitors in the individual and dual design for RDS are achieved using four different optimization algorithms. These algorithms are Modified Biogeography-Based Optimization (MBBO) algorithm, Cuckoo Search (CS) algorithm, Modified Imperialist Competitive (MIC) algorithm, and Modified Bacterial Foraging-Based Optimization (MBFBO) algorithm. These algorithms are applied for two standard networks (IEEE 33- and IEEE 69-bus). Comparisons among the proposed algorithms are done, and the results demonstrated that the MBBO algorithm is the most strong and fast algorithm to attain the optimum solution. In addition, comparisons with literature works are done to validate the effectiveness of proposed algorithms.
Radial Distribution System (RDS) suffer from high real power losses and lower bus voltages. Distribution System Reconfiguration (DSR) and Optimal Capacitor Placement (OCP) techniques are ones of the most economic and efficient approaches for loss reduction and voltage profile improvement while satisfy RDS constraints. The advantages of these two approaches can be concentrated using of both techniques together. In this study two techniques are used in different ways. First, the DSR technique is applied individually. Second, the dual technique has been adopted of DSR followed by OCP in order to identify the technique that provides the most effective performance. Three optimization algorithms have been used to obtain the optimal design in individual and dual technique. Two IEEE case studies (33bus, and 69 bus) used to check the effectiveness of proposed approaches. A Direct Backward Forward Sweep Method (DBFSM) has been used in order to calculate the total losses and voltage of each bus. Results show the capability of the proposed dual technique using Modified Biogeography Based Optimization (MBBO) algorithm to find the optimal solution for significant loss reduction and voltage profile enhancement. In addition, comparisons with literature works done to show the superiority of proposed algorithms in both techniques.
The distribution system represents the connection between consumers and the entire power network. The radial structure is preferred for distribution system due to its simple design and low cost. The electrical distribution system suffers from problems of rising power losses higher than the transmission system and voltage drop. One of the important solutions to improve the voltage profile and to reduce the electrical distribution system losses is the reactive power compensation which is based on the optimum choice of position and capacitor size in the network. In this paper, different models of electrical loads such as constant power(P), constant current(I), constant impedance(Z), and composite (ZIP) model are implemented with comparisons between them in order to identify the most effective load type that produces the optimal settlement for alleged loss reduction ,enhancement of the voltage profile, and cost savings. To minimize search space, Dolphin Optimization Algorithm (DOA) is applied for selecting the size and location of capacitors. Two case studies (IEEE 16- bus and 33- bus) are employed to evaluate the different load models with optimal reactive power compensation. The results of comparison between the different load models show that ZIP model is the best to produce the optimum solution for capacitor position and size. In addition, comparison of results with literature works are done and showed that DOA is the most robust among other algorithms to achieve the optimum solution for voltage profile enhancement significant reduction of losses, and saving cost.
Distribution System Reconfiguration (DSR) and Optimal Capacitor Placement (OCP) are the most economical and beneficial techniques that have been used in the Radial Distribution Systems (RDSs) to increase the reduction of losses and to perform a better voltage improvement. The DSR technique is a search process to find the shortest path length between the substation and the loads to achieve a maximum reduction in real losses. The OCP technique is used to compensate the reactive power that is required for the inductive loads, which reduces the active and reactive losses and enhances the voltage for the system buses. The approach of combining these techniques provides more improvement than using them individually. In this paper, four cases are implemented that employs either a single or double approach to identify the design with the best performance. The single approach is either DSR or OCP technique as individual technique, while the double approach is either OCP technique for the reconfigured RDS or reconfiguration for the RDS after the application of OCP technique. The optimal selection of tie switches, size and location of capacitors in the individual and dual approaches are achieved by using Qualified Binary Particle Swarm Optimization (QBPSO) and Modified Grey Wolf Optimization (MGWO) algorithms. The four cases are tested for standard IEEE system 33-bus RDS under different loading conditions. The results show the superior performance of the optimal proposed approaches compared to the literature works. Furthermore, the optimal dual techniques have show more effectiveness for loss reduction and voltage enhancement over their individual techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.