Capacitor Allocation (CA) and Network Reconfiguration (NR) are the traditional methods extensively applied by the researchers for power loss reduction and node voltage improvement in radial Distribution Network (DN) for the past four decades. In recent years, simultaneous optimization of CA and NR is considered to maximize the power loss reduction in a proficient manner in comparison to individual optimization of CA and NR. To solve the objective functions, this work proposes an application of Autonomous Group Particle Swarm Optimization (AGPSO) by optimal allocation and sizing of capacitors with and without NR, under four different cases, subject to satisfying operating constraints. In addition, to ascertain the impact of real power injection on further power loss reduction, this work considers placement and sizing of Distributed Generation (DG) units from single to three optimal nodes in capacitive compensated optimal DN. This proposed methodology is demonstrated using standard IEEE 33 and 69 bus test system and the results obtained by each test case have been compared with other optimization techniques. A significant amount of power loss gets minimized after optimal DG allocation in reactive power compensated optimal DN.