Suppressor of cytokine signaling 1 (SOCS1) is considered as a tumor suppressor protein in hepatocellular carcinoma (HCC), but the underlying mechanisms remain unclear. Previously, we have shown that SOCS1-deficient hepatocytes displayed increased responsiveness to hepatocyte growth factor (HGF) due to enhanced signaling via the MET receptor tyrosine kinase. As aberrant MET activation occurs in many tumors including HCC, here we elucidated the mechanisms of SOCS1-mediated regulation. SOCS1 attenuated HGF-induced proliferation of human and mouse HCC cell lines and their growth as tumors in NOD.scid.gamma mice. Tumors formed by SOCS1 expressing HCC cells showed significantly reduced MET expression, indicating that SOCS1 not only attenuates MET signaling but also regulates MET expression. Mechanistically, SOCS1 interacted with MET via the Src homology 2 domain and this interaction was promoted by MET tyrosine kinase activity. The SOCS1-mediated reduction in MET expression does not require the juxtamembrane Y1003 residue implicated in Cbl-mediated downmodulation. Moreover, the proteasome inhibitor MG-132, but not the inhibitors of lysosomal degradation bafilomycin and chloroquine, reversed the SOCS1-mediated reduction in MET expression, indicating that this process is distinct from Cbl-mediated downmodulation. Accordingly, SOCS1 promoted polyubiquitination of MET via K48-dependent but not K63-mediated ubiquitin chain elongation. Furthermore, siRNA-mediated downmodulation of Cbl did not abolish SOCS1-mediated reduction in MET expression in HCC cells. SOCS1-dependent ubiquitination of endogenous MET receptor occurred rapidly following HGF stimulation in HCC cells, leading to proteasomal degradation of phosphorylated MET receptor. These findings indicate that SOCS1 mediates its tumor suppressor functions, at least partly, by binding to MET and interfering with downstream signaling pathways as well as by promoting the turnover of the activated MET receptor. We propose that loss of this control mechanism due to epigenetic repression of SOCS1 could contribute to oncogenic MET signaling in HCC and other cancers, and that MET inhibitors might be useful in treating these patients.
The SOCS1 (Suppressor Of Cytokine Signalling 1) protein is considered a tumour suppressor. Notably, the SOCS1 gene is frequently silenced in cancer by hypermethylation of its promoter. Besides blocking inflammation, SOCS1 tumour suppressor activity involves Met receptor inhibition and enhancement of p53 tumour suppressor activity. However, the role of SOCS1 in colorectal cancer (CRC) remains understudied and controversial. Here, we investigated SOCS1 relevance for CRC by querying gene expression datasets of human CRC specimens from The Cancer Genome Atlas (TCGA), and by SOCS1 gain/loss-of-function analyses in murine and human colon carcinoma cells. Our results show that SOCS1 mRNA levels in tumours were more often elevated than reduced with respect to matched adjacent normal tissue of CRC specimens (n = 41). The analysis of TCGA dataset of 431 CRC patients revealed no correlation between SOCS1 expression and overall survival. Overexpression of SOCS1 in CRC cells triggered cell growth enhancement, anchorage-independent growth and resistance to death stimuli, whereas knockdown of SOCS1 reduced these oncogenic features. Moreover, SOCS1 overexpression in mouse CT26 cells increased tumourigenesis in vivo. Biochemical analyses showed that SOCS1 pro-oncogenic activity correlated with the down-modulation of STAT1 expression. Collectively, these results suggest that SOCS1 may work as an oncogene in CRC.
The deregulation of Met/hepatocyte growth factor (HGF) receptor tyrosine kinase signaling constitutes a common event in colorectal cancers. However, the physiopathological functions of such a deregulation remain poorly understood. In the present study, we investigated the role of the deregulation of Met receptor in the neoplastic transformation of intestinal epithelial cells. To do so, the normal, well-established and characterized rat intestinal epithelial IEC-6 cells were transduced with a retrovirus carrying the oncogenic constitutive active form of Met receptor, Tpr-Met. Herein, we show that compared with control IEC-6 cells, Tpr-Met-IEC-6 cells exhibit enhanced proliferation, loss of growth-contact inhibition, cell morphological alterations, actin cytoskeletal reorganization, loss of E-cadherin expression and anchorage-independent growth. Moreover, Tpr-Met-IEC-6 cells are conferred the capacity to produce the proangiogenic factor VEGF and to reduce the potent antiangiogenic factor thrombospondin-1. Of significance, Tpr-Met-IEC-6 cells are endowed with the ability to elicit angiogenic responses and to form tumors and metastases in vivo. Hence, our study demonstrates for the first time that the sole oncogenic engagement of Met receptor in normal intestinal epithelial cells is sufficient to induce a wide array of cancerous biological processes that are fundamental to the initiation and malignant progression of colorectal cancers.
Colorectal cancer (CRC) is a progressive disorder associated with an accumulation of multiple heterogeneous genetic alterations in intestinal epithelial cells (IEC). However, when these cells undergo neoplastic transformation and become cancerous and metastatic, they invariably acquire hallmarks conferring them the ability to hyperproliferate, escape growth-inhibitory and death-inducing cues, and promote angiogenesis as well as epithelial-to-mesenchymal transformation (EMT), fostering their invasive dissemination from primary tumor into distant tissues. Compelling clinical and experimental evidence suggest that aberrant engagement of cell surface growth factor receptor tyrosine kinase (RTK) signaling, like that of the hepatocyte growth factor (HGF)/MET receptor, underlies CRC metastatic progression by promoting these cancer hallmarks. To date, though, the use of RTK-targeting agents has been viewed as a promising approach for the treatment of metastatic CRC, clinical success has been modest.Our vision is that the prospect of designing RTK-based, improved and innovative CRC therapies and prognostic markers likely rests on a comprehensive understanding of the biological processes and underlying regulatory molecular mechanisms by which deregulation of RTK signaling governs IEC's neoplastic transformation and their transition from noninvasive to metastatic and malignant cells. Herein, we describe our scheme for defining the full scope of oncogenic MET-driven cancer biological processes, in cellulo and in vivo, as well as the individual contribution of MET-binding effectors in a nontransformed IEC model, the IEC-6 cell line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.