Abstract:In physical models it is well understood that the aggregate behaviour of a system is not in one to one correspondence with the behaviour of the average individual element of that system. Yet, in many economic models the behaviour of aggregates is thought of as corresponding to that of an individual. A typical example is that of public goods experiments. A systematic feature of such experiments is that, with repetition, people contribute less to public goods. A typical explanation is that people "learn to play Nash" or something approaching it. To justify such an explanation, an individual learning model is tested on average or aggregate data. In this paper we will examine this idea by analysing average and individual behaviour in a series of public goods experiments. We analyse data from a series of games of contributions to public goods and firstly to see what happens, if we follow the standard approach and test a learning model on the average data. We then look at individual data, examine the changes that this produces and see if some general model such as the EWA (Expected Weighted Attraction) with varying parameters can account for individual behaviour. We find that once we disaggregate data such models have poor explanatory power. Groups do not learn as supposed, their behaviour differs markedly from one group to another, and the behaviour of the individuals who make up the groups also varies within groups. The decline in aggregate contributions cannot be explained by resorting to a uniform model of individual behaviour.
Facing a heavy task, any single person can only make a limited contribution and team cooperation is needed. As one enjoys the benefit of the public goods, the potential benefits of the project are not always maximized and may be partly wasted. By incorporating individual ability and project benefit into the original public goods game, we study the coupling effect of the four parameters, the upper limit of individual contribution, the upper limit of individual benefit, the needed project cost and the upper limit of project benefit on the evolution of cooperation. Coevolving with the individual-level group size preferences, an increase in the upper limit of individual benefit promotes cooperation while an increase in the upper limit of individual contribution inhibits cooperation. The coupling of the upper limit of individual contribution and the needed project cost determines the critical point of the upper limit of project benefit, where the equilibrium frequency of cooperators reaches its highest level. Above the critical point, an increase in the upper Email address: zlxxwj@163.com (Li-Xin Zhong a) limit of project benefit inhibits cooperation. The evolution of cooperation is closely related to the preferred group-size distribution. A functional relation between the frequency of cooperators and the dominant group size is found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.