Abstract-Energy-efficiency in target tracking applications has been extensively studied in the literature of Wireless Sensor Networks (WSN). However, there is little work which has been done to survey and summarize this effort. In this paper, we address the lack of these studies by giving an up-to-date Stateof-the-Art of the most important energy-efficient target tracking schemes. We propose a novel classification of schemes that are based on the interaction between the communication subsystem and the sensing subsystem on a single sensor node. We are interested in collaborative target tracking instead of singlenode tracking. In fact, WSNs are often of a dense nature, and redundant data that can be received from multiple sensors help at improving tracking accuracy and reducing energy consumption by using limited sensing and communication ranges. We show that energy-efficiency in a collaborative WSN-based target tracking scheme can be achieved via two classes of methods: sensing-related methods and communication-related methods. We illustrate both of them with several examples. We show also that these two classes can be related to each other via a prediction algorithm to optimize communication and sensing operations. By self-organizing the WSN in trees and/or clusters, and selecting for activation the most appropriate nodes that handle the tracking task, the tracking algorithm can reduce the energy consumption at the communication and the sensing layers. Thereby, network parameters (sampling rate, wakeup period, cluster size, tree depth, etc.) are adapted to the dynamic of the target (position, velocity, direction, etc.). In addition to this general classification, we discuss also a special classification of some protocols that put specific assumptions on the target nature and/or use a "non-standard" hardware to do sensing. At the end, we conduct a theoretic comparison between all these schemes in terms of objectives and mechanisms. Finally, we give some recommendations that help at designing a WSN-based energy efficient target tracking scheme.
Abstract-Arabic is the official language overall Arab countries, it is used for official speech, news-papers, public administration and school. In Parallel, for everyday communication, nonofficial talks, songs and movies, Arab people use their dialects which are inspired from Standard Arabic and differ from one Arabic country to another. These linguistic phenomenon is called disglossia, a situation in which two distinct varieties of a language are spoken within the same speech community. It is observed Throughout all Arab countries, standard Arabic widely written but not used in everyday conversation, dialect widely spoken in everyday life but almost never written. Thus, in NLP area, a lot of works have been dedicated for written Arabic. In contrast, Arabic dialects at a near time were not studied enough. Interest for them is recent. First work for these dialects began in the last decade for middle-east ones. Dialects of the Maghreb are just beginning to be studied. Compared to written Arabic, dialects are under-resourced languages which suffer from lack of NLP resources despite their large use. We deal in this paper with Arabic Algerian dialect a non-resourced language for which no known resource is available to date. We present a first linguistic study introducing its most important features and we describe the resources that we created from scratch for this dialect.
In this paper, we evaluate our automatic text summarization system in multilingual context. We participated in both single document and multi-document summarization tasks of MultiLing 2015 workshop. Our method involves clustering the document sentences into topics using a fuzzy clustering algorithm. Then each sentence is scored according to how well it covers the various topics. This is done using statistical features such as TF, sentence length, etc. Finally, the summary is constructed from the highest scoring sentences, while avoiding overlap between the summary sentences. This makes it language-independent, but we have to afford preprocessed data first (tokenization, stemming, etc.).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.