The emerging, often multidrug-resistant Candida auris is increasingly being associated with outbreaks in healthcare facilities. Here we describe the molecular epidemiology of a C. auris outbreak during 18 months, which started in 2018 in the high dependency unit (HDU) of a secondary-care hospital in Kuwait. Demographic and clinical data for candidemia and colonized patients were prospectively recorded. Clinical and environmental isolates were subjected to phenotypic and molecular identification; antifungal susceptibility testing by broth microdilution method; PCR-sequencing of ERG11 and FKS1 for resistance mechanisms to triazoles and echinocandins, respectively; and molecular fingerprinting by short tandem repeat (STR) analyses. Seventy-one (17 candidemic and 54 colonized) patients including 26 with candiduria and seven environmental samples yielded C. auris. All isolates were identified as C. auris by Vitek2, MALDI-TOF MS, PCR amplification and/or PCR-sequencing of rDNA. Twelve candidemia and 26 colonized patients were admitted or exposed to HDU. Following outbreak recognition, an intensive screening program was instituted for new patients. Despite treatment of all candidemia and 36 colonized patients, 9 of 17 candidemia and 27 of 54 colonized patients died with an overall crude mortality rate of ~50%. Nearly all isolates were resistant to fluconazole and contained the Y132F mutation in ERG11 except one patient’s isolates, which were also distinct by STR typing. Only urine isolates from two patients developed echinocandin resistance with concomitant FKS1 mutations. The transmission of C. auris in this outbreak was linked to infected/colonized patients and the hospital environment. However, despite continuous surveillance and enforcement of infection control measures, sporadic new cases continued to occur, challenging the containment efforts.
The objective of this cross-sectional study was to compare the prevalence of Salmonella and antimicrobial-resistant Salmonella, as well as investigate the distribution of this pathogen in organic and conventional broiler poultry farms. Fecal (n = 420), feed (n = 140), and drinking water (n = 140) samples were collected from birds at 3 and 8 weeks of age for 2-flock cycles. One house was sampled per farm at three organic and four conventional broiler farms from the same company in North Carolina. All samples were analyzed for the presence of Salmonella using selective enrichment techniques. Further phenotypic (antimicrobial susceptibility) and genotypic (pulsed-field gel electrophoresis [PFGE]) testing were performed. Salmonella prevalences in fecal samples were 5.6% (10/180) and 38.8% (93/240) from organic and conventional farms, respectively. From feed, 5.0% (3/60) and 27.5% (22/80) of the samples were positive for Salmonella from organic and conventional farms, respectively. None of the water samples were positive for Salmonella. Seventy isolates were characterized by antimicrobial susceptibility and PFGE types. The two most common resistance phenotypes were single resistance to streptomycin (36.2% [25/58]: conventional; 25% [3/12] organic), and multidrug resistance to six antimicrobial agents: ampicillin-streptomycin-amoxicillin/clavulanic acid-cephalothin-ceftiofur-cefoxitin (AmStAxChCfFx; 39.7%: conventional only). Genotypic analysis using PFGE showed clonality among isolates within and between the two types of farms. The results of our study suggest that within this poultry company, the prevalence of fecal Salmonella was lower in certified-organic birds than in conventionally raised birds, and the prevalence of antimicrobial-resistant Salmonella was also higher in conventionally raised birds than in certified-organic birds.
Data regarding Salmonella on raw poultry are very limited in China. The objective of this study was to determine the prevalence of Salmonella on raw poultry at the retail level in six provinces and two national cities in China. Whole chicken carcasses (n = 1,152) were collected from three types of retail markets (large, small, and wet). All samples were analyzed for the presence of Salmonella by using the U.S. Department of Agriculture, Food Safety Inspection Service method. Of 1,152 chicken samples, overall Salmonella prevalence was 52.2%. The highest prevalence was observed in Guangxi Province (65.3%), next in Guangdong Province (64.6%), and then in Beijing (63.9%), Shaanxi Province (50.7%), Henan Province (47.9%), Shanghai (44.4%), and Fujian Province (42.4%), and lowest prevalence was observed in Sichuan Province (38.9%). Salmonella prevalence was significantly different among the six provinces and two national cities. Salmonella prevalence was highest in the wet markets (54.4%) compared with the large markets (50.3%) and the small markets (52.1%), but differences were not significant (P > 0.05). Good manufacturing practices, good agricultural practices, and hazard analysis critical control point systems for Salmonella control in poultry production at the farm, processing, and retail level should be implemented.
The application, timing, and duration of lockdown strategies during a pandemic remain poorly quantified with regards to expected public health outcomes. Previous projection models have reached conflicting conclusions about the effect of complete lockdowns on COVID-19 outcomes. We developed a stochastic continuous-time Markov chain (CTMC) model with eight states including the environment (SEAMHQRD-V), and derived a formula for the basic reproduction number, R0, for that model. Applying the $${R}_{0}$$ R 0 formula as a function in previously-published social contact matrices from 152 countries, we produced the distribution and four categories of possible $${R}_{0}$$ R 0 for the 152 countries and chose one country from each quarter as a representative for four social contact categories (Canada, China, Mexico, and Niger). The model was then used to predict the effects of lockdown timing in those four categories through the representative countries. The analysis for the effect of a lockdown was performed without the influence of the other control measures, like social distancing and mask wearing, to quantify its absolute effect. Hypothetical lockdown timing was shown to be the critical parameter in ameliorating pandemic peak incidence. More importantly, we found that well-timed lockdowns can split the peak of hospitalizations into two smaller distant peaks while extending the overall pandemic duration. The timing of lockdowns reveals that a “tunneling” effect on incidence can be achieved to bypass the peak and prevent pandemic caseloads from exceeding hospital capacity.
The objective of this longitudinal controlled trial was to quantitatively compare carriage of a gene encoding for ceftiofur-resistance (bla(CMY-2)), standardized to a reference gene (16SrRNA), among total community DNA extracted from fecal samples collected from cattle treated with three different dose regimens of ceftiofur crystalline-free acid (CCFA) versus those untreated (controls). Sixty-one steers were assigned to three treatment regimens and housed in six pens. In each pen, five steers were treated and five were controls (one of the pens had six controls). CCFA administration was as follows: two-thirds dose treatment (4.4 mg/kg, on day 0), single-dose treatment (6.6 mg/kg, on day 0), and three-dose treatment (6.6 mg/kg, on days 0, 6, and 13). Fecal samples were collected on days 0, 3, 7, 10, 14, 18, 21, and 28. The gene copy numbers/gram of feces for bla(CMY-2) and 16SrRNA were determined in total community DNA samples using quantitative real-time PCR. The relationships between the quantities of standardized bla(CMY-2), nonstandardized bla(CMY-2), and nonstandardized 16SrRNA, and the explanatory variables (treatment, time, and treatment x time) were assessed using repeated measures mixed models. There were significant differences in each of the three models with respect to each explanatory variable. Overall, while steers administered three doses and two-thirds dose of CCFA had significantly higher quantities of nonstandardized bla(CMY-2) than controls, the standardized values were lower. The administration of CCFA in feedlot cattle may provide selection pressure favoring higher levels of bla(CMY-2) carriage, but this may also lead to concurrent reductions in the total bacterial population (as reflected by lowered 16SrRNA) during the treatment period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.