The active-to-passive transition in the oxidation of Sic and Si3NI was determined in a flowing air environment as a function of temperature and total pressure. The experimentally observed transition temperatures ranged from a low of 1347°C to a high of 1543°C for partial pressures of oxygen of 2.5 and 123.2 Pa, respectively. The Sic and Si3N4 samples had approximately the same transition point for a given pressure. In general, the higher the flow rate, the higher the transition temperature for a given pressure. The transitions for Sic measured in this study agree with previous data for the transition of Sic measured in pure oxygen at reduced pressures and in oxygen inert gas mixtures. [
The fracture toughness of a 30 vol% Sic whisker/Alz03 matrix composite was evaluated as a function of whisker surface chemistry. Two types of SIC whiskers (Silar-SC-9 and Tateho-SCW-1-S) were investigated. Madification of the whisker surface chemistry was achieved by subjecting the whiskers to thermal treatments under controlled atmospheres. Whisker surface chemistry, as determined by X-ray photoelectron spectroscopy, was correlated to the fracture toughness of the composites. [
Whisker-reinforced ceramic matrix composites have recently received a great deal of attention for applications as high temperature structural materials in, for example, advanced heat engines and high temperature energy conversion systems. For applications requiring mechanical reliability, the improvements that can be realized in fracture strength and fracture toughness are of great interest. Of particular importance for optimizing the mechanical reliability of these composites is the effect of the whisker/matrix interfacial characteristics on the strengthening and toughening mechanisms. Whisker reinforcements are primarily utilized to prevent catastrophic brittle failure by providing processes that dissipate energy during crack propagation. The degree of energy dissipation depends on the nature of the whisker/matrix interface, which can be controlled largely by the matrix chemistry, the whisker surface chemistry, and the processing parameters.It is generally believed that a strong interfacial bond results in a composite exhibiting brittle behavior. These composites usually have good fracture strengths but low fracture toughnesses. If the interfacial bond is weak, the composite will not fail in a catastrophic manner due to the activation of various energy dissipation processes. These latter composites tend to have high fracture toughnesses and low fracture strengths. Generally, the interface should be strong enough to transfer the load from the matrix to the whiskers, but weak enough to fail preferentially prior to failure. Thus, local damage occurs without catastrophic failure. It is therefore necessary to control the interfacial chemistry and bonding in order to optimize the overall mechanical performance of the composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.