The genus Aspergillus represents a diverse group of fungi that are among the most abundant fungi in the world. Germination of a spore can lead to a vegetative mycelium that colonizes a substrate. The hyphae within the mycelium are highly heterogeneous with respect to gene expression, growth, and secretion. Aspergilli can reproduce both asexually and sexually. To this end, conidiophores and ascocarps are produced that form conidia and ascospores, respectively. This review describes the molecular mechanisms underlying growth and development of Aspergillus.
In Candida albicans wild‐type cells, the β1,6‐glucanase‐extractable glycosylphosphatidylinositol (GPI)‐dependent cell wall proteins (CWPs) account for about 88% of all covalently linked CWPs. Approximately 90% of these GPI‐CWPs, including Als1p and Als3p, are attached via β1,6‐glucan to β1,3‐glucan. The remaining GPI‐CWPs are linked through β1,6‐glucan to chitin. The β1,6‐glucanase‐resistant protein fraction is small and consists of Pir‐related CWPs, which are attached to β1,3‐glucan through an alkali‐labile linkage. Immunogold labelling and Western analysis, using an antiserum directed against Saccharomyces cerevisiae Pir2p/Hsp150, point to the localization of at least two differentially expressed Pir2 homologues in the cell wall of C. albicans. In mnn9Δ and pmt1Δ mutant strains, which are defective in N‐ and O‐glycosylation of proteins respectively, we observed enhanced chitin levels together with an increased coupling of GPI‐CWPs through β1,6‐glucan to chitin. In these cells, the level of Pir‐CWPs was slightly upregulated. A slightly increased incorporation of Pir proteins was also observed in a β1,6‐glucan‐deficient hemizygous kre6Δ mutant. Taken together, these observations show that C. albicans follows the same basic rules as S. cerevisiae in constructing a cell wall and indicate that a cell wall salvage mechanism is activated when Candida cells are confronted with cell wall weakening.
The pattern of plant organ initiation at the shoot apical meristem (SAM), termed phyllotaxis, displays regularities that have long intrigued botanists and mathematicians alike. In the SAM, the central zone (CZ) contains a population of stem cells that replenish the surrounding peripheral zone (PZ), where organs are generated in regular patterns. These patterns differ between species and may change in response to developmental or environmental cues [1]. Expression analysis of auxin efflux facilitators of the PIN-FORMED (PIN) family combined with modeling of auxin transport has indicated that organ initiation is associated with intracellular polarization of PIN proteins and auxin accumulation [2-10]. However, regulators that modulate PIN activity to determine phyllotactic patterns have hitherto been unknown. Here we reveal that three redundantly acting PLETHORA (PLT)-like AP2 domain transcription factors control shoot organ positioning in the model plant Arabidopsis thaliana. Loss of PLT3, PLT5, and PLT7 function leads to nonrandom, metastable changes in phyllotaxis. Phyllotactic changes in plt3plt5plt7 mutants are largely attributable to misregulation of PIN1 and can be recapitulated by reducing PIN1 dosage, revealing that PLT proteins are key regulators of PIN1 activity in control of phyllotaxis.
The localization of the enzymes involved in penicillin biosynthesis in Penicillium chrysogenum hyphae has been studied by immunological detection methods in combination with electron microscopy and cell fractionation. The results suggest a complicated pathway involving different intracellular locations. The enzyme delta‐(L‐alpha‐aminoadipyl)‐L‐cysteinyl‐D‐valine synthetase was found to be associated with membranes or small organelles. The next enzyme isopenicillin N‐synthetase appeared to be a cytosolic enzyme. The enzyme which is involved in the last step of penicillin biosynthesis, acyltransferase, was located in organelles with a diameter of 200–800 nm. These organelles, most probably, are microbodies. A positive correlation was found between the capacity for penicillin production and the number of organelles per cell when comparing different P. chrysogenum strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.