Lipids are produced, transported, and recognized by the concerted actions of numerous enzymes, binding proteins, and receptors. A comprehensive analysis of lipid molecules, "lipidomics," in the context of genomics and proteomics is crucial to understanding cellular physiology and pathology; consequently, lipid biology has become a major research target of the postgenomic revolution and systems biology. To facilitate international communication about lipids, a comprehensive classification of lipids with a common platform that is compatible with informatics requirements has been developed to deal with the massive amounts of data that will be generated by our lipid community. As an initial step in this development, we divide lipids into eight categories (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids, and polyketides) containing distinct classes and subclasses of molecules, The goal of collecting data on lipids using a "systems biology" approach to lipidomics requires the development of a comprehensive classification, nomenclature, and chemical representation system to accommodate the myriad lipids that exist in nature. Lipids have been loosely defined as biological substances that are generally hydrophobic in nature and in many cases soluble in organic solvents (1). These chemical properties cover a broad range of mole-
We report the lipidomic response of the murine macrophage RAW cell line to Kdo 2 -lipid A, the active component of an inflammatory lipopolysaccharide functioning as a selective TLR4 agonist and compactin, a statin inhibitor of cholesterol biosynthesis. Analyses of lipid molecular species by dynamic quantitative mass spectrometry and concomitant transcriptomic measurements define the lipidome and demonstrate immediate responses in fatty acid metabolism represented by increases in eicosanoid synthesis and delayed responses characterized by sphingolipid and sterol biosynthesis. Lipid remodeling of glycerolipids, glycerophospholipids, and prenols also take place, indicating that activation of the innate immune system by inflammatory mediators leads to alterations in a majority of mammalian lipid categories, including unanticipated effects of a statin drug. Our studies provide a systems-level view of lipid metabolism and reveal significant connections between lipid and cell signaling and biochemical pathways that contribute to innate immune responses and to pharmacological perturbations.The "omics" revolution has provided significant insight into the genes, mRNAs, and proteins of mammalian cells, biological systems, and disease (1-3). An important function of these macromolecular classes is the production of metabolites that in turn are used by cells for replication and function. Lipids comprise major structural and metabolic components of cells and have essential functions in the formation of membranes, energy production, and intracellular signaling. Despite the central role of lipids in mammalian cell function, there has been no systematic effort to define the lipid "parts list" of a mammalian cell or the changes in these lipids associated with cellular function and disease. Many biochemical pathways leading to the synthesis and degradation of major lipid categories are known, but how these pathways interact under normal and pathological conditions remains unexplored. Recent advances in mass spectrometry have made it possible to qualitatively and quantitatively analyze a majority of cellular lipids (4 -8). We report here a comprehensive systems-level analysis of a mammalian cell lipidome through temporal measurements.We characterized lipidomic responses of RAW264.7 (RAW) macrophages to a highly specific ligand for Toll-like receptor 4 (TLR4) 4 that mimics aspects of bacterial infection. This model is of particular interest because of the essential roles that alterations in macrophage lipid metabolism play in innate and adaptive immune responses and the development of chronic inflammatory and cardiovascular diseases. Recent studies further suggest that TLR signaling in macrophages is not only required for innate immunity against viral and bacterial pathogens but also contributes to the pathogenesis of atherosclerosis, diabetes, arthritis, and other inflammatory diseases (9). Although TLR4 signaling is known to exert profound effects on the macrophage transcriptome (10), proteome (11), and selected lipid species that...
Lipids are produced, transported, and recognized by the concerted actions of numerous enzymes, binding proteins, and receptors. A comprehensive analysis of lipid molecules, "lipidomics," in the context of genomics and proteomics is crucial to understanding cellular physiology and pathology; consequently, lipid biology has become a major research target of the postgenomic revolution and systems biology. To facilitate international communication about lipids, a comprehensive classification of lipids with a common platform that is compatible with informatics requirements has been developed to deal with the massive amounts of data that will be generated by our lipid community. As an initial step in this development, we divide lipids into eight categories (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids, and polyketides) containing distinct classes and subclasses of molecules, devise a common manner of representing the chemical structures of individual lipids and their derivatives, and provide a 12 digit identifier for each unique lipid molecule. The lipid classification scheme is chemically based and driven by the distinct hydrophobic and hydrophilic elements that compose the lipid. This structured vocabulary will facilitate the systematization of lipid biology and enable the cataloging of lipids and their properties in a way that is compatible with other macromolecular databases.
The LIPID MAPS Consortium (www.lipidmaps. org) is developing comprehensive procedures for identifying all lipids of the macrophage, following activation by endotoxin. The goal is to quantify temporal and spatial changes in lipids that occur with cellular metabolism and to develop bioinformatic approaches that establish dynamic lipid networks. To achieve these aims, an endotoxin of the highest possible analytical specification is crucial. We now report a large-scale preparation of 3-deoxy-D-manno-octulosonic acid (Kdo) 2 -Lipid A, a nearly homogeneous Re lipopolysaccharide (LPS) sub-structure with endotoxin activity equal to LPS. Kdo 2 -Lipid A was extracted from 2 kg cell paste of a heptose-deficient Escherichia coli mutant. It was purified by chromatography on silica, DEAE-cellulose, and C18 reverse-phase resin. Structure and purity were evaluated by electrospray ionization/mass spectrometry, liquid chromatography/mass spectrometry and 1 H-NMR. Its bioactivity was compared with LPS in RAW 264.7 cells and bone marrow macrophages from wild-type and toll-like receptor 4 (TLR-4)-deficient mice. Cytokine and eicosanoid production, in conjunction with gene expression profiling, were employed as readouts. Kdo 2 -Lipid A is comparable to LPS by these criteria. Its activity is reduced by . The LIPID MAPS consortium is developing quantitative methods for evaluating the composition, biosynthesis, and function of all macrophage lipids (1). These amphipathic substances not only are structural components of biological membranes but also play important roles in the pathophysiology of inflammation, atherosclerosis, and growth control. Additional lipid functions should emerge from the comprehensive analysis of macrophage lipids. Electrospray ionization/mass spectrometry (ESI/MS) (2, 3), coupled with prefractionation methods like reversephase liquid chromatography (LC), is being applied systematically to set the stage for the seamless integration of lipid metabolism into the broader fields of genomics, proteomics, and systems biology. To facilitate this endeavor, LIPID MAPS has introduced a new comprehensive classification system for biological lipids, amenable to computer-based data processing and substructure comparison (4). The eight LIPID MAPS categories are 1) fatty acyls, 2) glycerolipids, 3) glycerophospholipids, 4) sphingolipids, 5) sterol lipids, 6) prenol lipids, 7) saccharolipids,
The mechanism of the lamellar/inverted cubic (QII) phase transition is related to that of membrane fusion in lipid systems. N-Monomethylated dioleoylphosphatidylethanolamine (DOPE-Me) exhibits this transition and is commonly used to investigate the effects of exogenous substances, such as viral fusion peptides, on the mechanism of membrane fusion. We studied DOPE-Me phase behavior as a first step in evaluating the effects of membrane-spanning peptides on inverted phase formation and membrane fusion. These measurements show that: a) the onset temperatures for QII and inverted hexagonal (HII) phase formation both are temperature scan rate-dependent; b) longer pre-incubation times at low temperature and lower temperature scan rates favor formation of the QII phase; and c) in temperature-jump experiments between 61 and 65 degrees C, the meta-stable HII phase forms initially, and disappears slowly while the QII phase develops. These observations are rationalized in the context of a mechanism for both the lamellar/non-lamellar phase transition and the related process of membrane fusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.