The results indicate that the spectroscopic information provided by the needle stylet could potentially allow for reliable identification of transitions from subcutaneous fat to skeletal muscle and from the muscle to the nerve target region during peripheral nerve blocks.
Epidural injection is commonly used to provide intraoperative anesthesia, postoperative and obstetric analgesia, and to treat acute radicular pain. Identification of the epidural space is typically carried out using the loss of resistance (LOR) technique, but the usefulness of this technique is limited by false LOR and the inability to reliably detect intravascular or subarachnoid needle placement. In this study, we present a novel epidural needle that allows for the acquisition of optical reflectance spectra from tissue close to the beveled surface. This needle has optical fibers embedded in the cannula that deliver and receive light. With two spectrometers, light received from tissue is resolved across the wavelength range of 500 to 1600 nm. To determine the feasibility of optical tissue differentiation, spectra were acquired from porcine tissues during a post mortem laminectomy. The spectra were processed with an algorithm that derives estimates of the hemoglobin and lipid concentrations. The results of this study suggest that the optical epidural needle has the potential to improve the accuracy of epidural space identification.
The effectiveness of peripheral nerve blocks is highly dependent on the accuracy at which the needle tip is navigated to the target injection site. Even when electrical stimulation is utilized in combination with ultrasound guidance, determining the proximity of the needle tip to the target region close to the nerve can be challenging. Optical reflectance spectroscopy could provide additional information about tissues that is complementary to these navigation methods. We demonstrate a novel needle stylet for acquiring spectra from tissue at the tip of a commercial 20-gauge needle. The stylet has integrated optical fibers that deliver broadband light to tissue and receive scattered light. Two spectrometers resolve the light that is received from tissue across the wavelength range of 500-1600 nm. In our pilot study, measurements are acquired from a postmortem dissection of the brachial plexus of a swine. Clear differences are observed between spectra acquired from nerves and those acquired from adjacent tissue structures. We conclude that spectra acquired with the stylet have the potential to increase the accuracy with which peripheral nerve blocks are performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.