Detailed descriptions are given of materials, apparatus and the experimental procedure used to study the effect of bacteria on sandstone permeability. The factors affecting permeability during injection of bacterial suspensions which have been investigated are:concentration of bacteria;core permeability and median pore size;species of bacteria, mode of aggregation and relative size;injection rate or pressure differential;mean pressure; anddepth of penetration of bacteria. The investigation demonstrated that bacteria cannot reduce core permeability to zero and that their effect on permeability is subject to definite limitations. Remedial or permeability restoration studies also were made. Acidization in combination with reverse flow was found to be an effective method for restoring permeability in cores partially plugged with bacteria. The relationship between the bacterial quantities in the laboratory tests and those found in field operations is discussed. The linear laboratory flow data have been translated into terms of field radial systems; these data indicate the most practical methods of maintaining injection rates in the presence of bacteria are to increase injection pressures or hydraulically fracture the formation. Introduction It has long been known that various bacteria flourish in the above-ground components of oil field water- injection systems. The presence of these bacteria has led to the suspicion that they might enter into the causes for reduction of injection well permeability, but only recently has an attempt been made to describe the effects quantitatively. Biocides are used in many cases without a firm knowledge as to whether the bacteria are killed, or if they are, whether the dead cells affect formation permeability. This project was undertaken as part of a study to determine the effect of bacteria, residual oil and precipitated solids such as iron sulfide or calcium carbonate on the permeability of sandstones and to learn whether any of these materials adversely affect brine injectivity in secondary recovery or disposal operations. This report deals with that portion relating to the effect of bacteria. MATERIALS CORES Three different permeability ranges of Berea sandstone cores were used in the study. The range of initial, absolute brine permeabilities ki were: high - 278 to 400 md; medium-130 to 162 md; and low-17.7 to 48.3 md. The permeability data for the cores used in the tests are included in Table 1. All cores were cut to a nominal 1 in. diameter. Following air permeability determinations, they were molded with an epoxy resin in 1.5 in. ID aluminum sleeves. The sleeves had drilled and tapped holes for intermediate pressure connections along the length of the cores. After molding, the high- and medium-permeability cores were trimmed to 4 in. in length and the low-permeability cores to 2 in. These lengths resulted in pore volumes of approximately 10.9, 10.4 and 4.4 ml. respectively, for the high-, medium- and low-permeability cores. Pressure transmitting channels were drilled through the plastic into the core proper, using the sleeve holes as drill guides. Width and depth of channel penetration into the core proper were approximately 0.03 in. and 0.05 in., respectively. Three pressure taps were used with all cores; for the high- and medium-permeability cores the taps were spaced 1 in. apart; for the low-permeability cores the taps were spaced 0.4, 0.8 and 1.2 in. from the inlet end. Pore size distributions were calculated from restored- state capillary pressure curves for representative cores in each of the three permeability ranges. In each case the pore size range with the greatest percentage of the pore space included the very small pores up to 0.5 micron in radius. The median pore radii were in the 5.5 to 6 micron range for the high-permeability cores; in the 4.5 to 5 micron range for the medium-permeability cores; and in the 3.5 to 4 micron range for the low-permeability cores. JPT P. 805^
``Stray currents'' from street electric railways and the like give rise to rapid corrosion of buried pipe lines. A type of currents similar to ``stray currents,'' but which occur at long distances from any possible external source of electric current, has been found on pipe lines. These currents are known as ``long line currents'' and are supposed to originate between the soil and the pipe. They frequently follow the pipe for miles without any change in amperage. To determine possible influence of these currents upon corrosion, measurements of their value were made on an 8-inch oil line upon which much corrosion trouble had been experienced. The line was removed from the ground and the extent of corrosion determined by inspection. Electrical resistivities of numerous samples of soil were determined. From the data obtained, the following conclusions are drawn: 1. Discharge or accumulation of electric currents of the class which have been termed ``long line currents'' is, in general, without influence upon corrosion of buried pipe lines. 2. Electrical resistivity of soil correlates to a certain extent with corrosion of buried pipe; the relationship is not sufficiently consistent to be of practical value. 3. There is no consistent relationship between soil resistivity and the accumulation or discharge of ``long line currents.''
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.