Wireless Local Area Networks (WLANs) have become an increasingly popular mode of communication and networking, with a wide range of applications in various fields. However, the increasing popularity of WLANs has also led to an increase in security threats, including denial of service (DoS) attacks. In this study, management-frames-based DoS attacks, in which the attacker floods the network with management frames, are particularly concerning as they can cause widespread disruptions in the network. Attacks known as denial of service (DoS) can target wireless LANs. None of the wireless security mechanisms in use today contemplate defence against them. At the MAC layer, there are multiple vulnerabilities that can be exploited to launch DoS attacks. This paper focuses on designing and developing an artificial neural network (NN) scheme for detecting management-frames-based DoS attacks. The proposed scheme aims to effectively detect fake de-authentication/disassociation frames and improve network performance by avoiding communication interruption caused by such attacks. The proposed NN scheme leverages machine learning techniques to analyse patterns and features in the management frames exchanged between wireless devices. By training the NN, the system can learn to accurately detect potential DoS attacks. This approach offers a more sophisticated and effective solution to the problem of DoS attacks in wireless LANs and has the potential to significantly enhance the security and reliability of these networks. According to the experimental results, the proposed technique exhibits higher effectiveness in detection compared to existing methods, as evidenced by a significantly increased true positive rate and a decreased false positive rate.
Internet availability and its integration with smart technologies have favored everyday objects and things and offered new areas, such as the Internet of Things (IoT). IoT refers to a concept where smart devices or things are connected and create a network. This new area has suffered from big data handling and security issues. There is a need to design a data analytics model by using new 5G technologies, architecture, and a security model. Reliable data communication in the presence of legitimate nodes is always one of the challenges in these networks. Malicious nodes are generating inaccurate information and breach the user’s security. In this paper, a data analytics model and self-organizing architecture for IoT networks are proposed to understand the different layers of technologies and processes. The proposed model is designed for smart environmental monitoring systems. This paper also proposes a security model based on an authentication, detection, and prediction mechanism for IoT networks. The proposed model enhances security and protects the network from DoS and DDoS attacks. The proposed model evaluates in terms of accuracy, sensitivity, and specificity by using machine learning algorithms.
New technologies and communication standards have changed traditional network processes. Internet of Things (IoT) is one of the emerging technologies where devices are connected to facilitate the users. When the networks are more congested due to a large number of users then the existing routing protocol and communication channels suffer from congestion, disconnection, overhead, and packet drop issues. Unmanned Aerial Vehicles (UAVs) are adopted to support the ground networks for more feasible data communication. These networks provide coverage facilities to IoT networks and provide smooth data dissemination services. Through the use of relay and cooperative communication technologies, UAVs could enlarge the communication space for IoT networks. Traditional network routing protocols have been adopted for data communication in these networks. However, the adopted protocols are not able to handle mobility and uncertain network conditions. This paper proposes a Decision-based Routing for Unmanned Aerial Vehicles and Internet of Things (DR-UAVIoT) network. The proposed protocol is useful for UAV-to-IoT and UAV-to-UAV data communication. The performance of the proposed solution is evaluated with the existing protocols in terms of data delivery, delay, and network overhead. The experimental results indicate the better performance of the proposed protocol in terms of less delay, less overhead, and better data delivery ratio as compared with existing routing protocols.
Unmanned Aerial Vehicle (UAV) deployment and placement are largely dependent upon the available energy, feasible scenario, and secure network. The feasible placement of UAV nodes to cover the cellular networks need optimal altitude. The under or over-estimation of nodes’ air timing leads to of resource waste or inefficiency of the mission. Multiple factors influence the estimation of air timing, but the majority of the literature concentrates only on flying time. Some other factors also degrade network performance, such as unauthorized access to UAV nodes. In this paper, the UAV coverage issue is considered, and a Coverage Area Decision Model for UAV-BS is proposed. The proposed solution is designed for cellular network coverage by using UAV nodes that are controlled and managed for reallocation, which will be able to change position per requirements. The proposed solution is evaluated and tested in simulation in terms of its performance. The proposed solution achieved better results in terms of placement in the network. The simulation results indicated high performance in terms of high packet delivery, less delay, less overhead, and better malicious node detection.
Due to the rapid propagation characteristic of the Coronavirus (COV-ID-19) disease, manual diagnostic methods cannot handle the large number of infected individuals to prevent the spread of infection. Despite, new automated diagnostic methods have been brought on board, particularly methods based on artificial intelligence using different medical data such as X-ray imaging. Thoracic imaging, for example, produces several image types that can be processed and analyzed by machine and deep learning methods. X-ray imaging materials widely exist in most hospitals and health institutes since they are affordable compared to other imaging machines. Through this paper, we propose a novel Convolutional Neural Network (CNN) model ( COV2Net) that can detect COVID-19 virus by analyzing the X-ray images of suspected patients. This model is trained on a dataset containing thousands of X-ray images collected from different sources. The model was tested and evaluated on an independent dataset. In order to approve the performance of the proposed model, three CNN models namely Mobile-Net, Residential Energy Services Network (Res-Net), and Visual Geometry Group 16 (VGG-16) have been implemented using transfer learning technique. This experiment consists of a multi-label classification task based on X-ray images for normal patients, patients infected by COVID-19 virus and other patients infected with pneumonia. This proposed model is empowered with Gradient-weighted Class Activation Mapping (Grad-CAM) and Grad-Cam++ techniques for a visual explanation and methodology debugging goal. The finding results show that the proposed model COV2Net outperforms the state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.