Background: The outbreak of coronavirus disease 2019 (COVID-19), like severe acute respiratory syndrome (SARS), provokes fear, anxiety and depression in the public, which further affects mental health issues. Taiwan has used their experience of the SARS epidemic for the management of foreseeable problems in COVID-19 endemic. Aim/Objective: This review summarizes issues concerning mental health problems related to infectious diseases from current literatures. Results: In suspected cases under quarantine, confirmed cases in isolation and their families, health care professionals, and the general population and related effective strategies to reduce these mental health issues, such as helping to identify stressors and normalizing their impact at all levels of response as well as public information and communication messages by electronic devices. The importance of community resilience was also addressed. Psychological first aid, psychological debriefing, mental health intervention and psychoeducation were also discussed. Issues concerning cultures and religions are also emphasized in the management plans. Conclusion: Biological disaster like SARS and COVID-19 not only has strong impact on mental health in those being infected and their family, friends, and coworkers, but also affect wellbeing in general public. There are evidenced that clear and timely psychoeducation, psychological first aid and psychological debriefing could amileorate negative impact of disaster, thus might also be helpful amid COVID-19 pandemic.
Coronaviruses (CoVs) are a known global threat, and most recently the ongoing COVID-19 pandemic has claimed more than 2 million human lives. Delays and interference with IFN responses are closely associated with the severity of disease caused by CoV infection. As the most abundant viral protein in infected cells just after the entry step, the CoV nucleocapsid (N) protein likely plays a key role in IFN interruption. We have conducted a comprehensive comparative analysis and report herein that the N proteins of representative human and animal CoVs from four different genera [swine acute diarrhea syndrome CoV (SADS-CoV), porcine epidemic diarrhea virus (PEDV), severe acute respiratory syndrome CoV (SARS-CoV), SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), infectious bronchitis virus (IBV) and porcine deltacoronavirus (PDCoV)] suppress IFN responses by multiple strategies. In particular, we found that the N protein of SADS-CoV interacted with RIG-I independent of its RNA binding activity, mediating K27-, K48- and K63-linked ubiquitination of RIG-I and its subsequent proteasome-dependent degradation, thus inhibiting the host IFN response. These data provide insight into the interaction between CoVs and host, and offer new clues for the development of therapies against these important viruses.
BackgroundReduced health-related quality of life in the physical domain (HRQOLphysical) has been reported to increase risks for cardiovascular disease (CVD); however, the mechanism underlying this phenomenon is still unclear. The autonomic nervous system (ANS) that connects the body and mind is a biologically plausible candidate to investigate this mechanism. The aim of our study is to examine whether the HRQOLphysical independently contributes to heart rate variability (HRV), which reflects ANS activity.MethodsWe recruited 329 physically and mentally healthy adults. All participants completed Beck Anxiety Inventory, Beck Depression Inventory and World Health Organization Questionnaire on Quality of Life: Short Form-Taiwanese version (WHOQOL-BREF). They were divided into groups of individuals having high or low scores of HRQOLphysical as discriminated by the quartile value of WHOQOL-BREF. We obtained the time and frequency-domain indices of HRV, namely variance (total HRV), the low-frequency power (LF; 0.05–0.15 Hz), which may reflect baroreflex function, the high-frequency power (HF; 0.15–0.40 Hz), which reflects cardiac parasympathetic activity, and the LF/HF ratio.ResultsThere was an independent contribution of HRQOLphysical to explaining the variance in HRV after excluding potential confounding factors (gender, age, physical activity, alcohol use, depression and anxiety). Compared with the participants with high levels of HRQOLphysical, those with low levels of HRQOLphysical displayed significant reductions in variance and LF.ConclusionsThis study highlights the independent role of low HRQOLphysical in contributing to the reduced HRV in healthy adults and points to a potential underlying mechanism for HRQOLphysical to confer increased risks for CVD.
Virus-like particles (VLPs) are nano-scale particles that are morphologically similar to a live virus but which lack a genetic component. Since the pandemic spread of COVID-19, much focus has been placed on coronavirus (CoV)-related VLPs. CoVs contain four structural proteins, though the minimum requirement for VLP formation differs among virus species. CoV VLPs are commonly produced in mammalian and insect cell systems, sometimes in the form of chimeric VLPs that enable surface display of CoV epitopes. VLPs are an ideal model for virological research and have been applied as vaccines and diagnostic reagents to aid in clinical disease control. This review summarizes and updates the research progress on the characteristics of VLPs from different known CoVs, mainly focusing on assembly, in vitro expression systems for VLP generation, VLP chimerism, protein-based nanoparticles and their applications in basic research and clinical settings, which may aid in development of novel VLP vaccines against emerging coronavirus diseases such as SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.