Tick-borne encephalitis virus (TBEV) belonging to arboviruses is a major member of zoonotic pathogens. TBEV infection causes severe human encephalitis without specific antiviral drugs. Due to its use of antiviral drug against a wide range of viruses, we investigated antiviral effect of ribavirin against TBEV in susceptible human cell lines A549 and SH-SY5Y. Ribavirin displayed minor cytotoxicity on multiple cell lines. Ribavirin obviously impaired TBEV replication and protected the infected cells from cytopathic effect. Importantly, ribavirin markedly inhibited TBEV propagation, as evidenced by impairment of TBEV production and viral RNA replication. Treatment with ribavirin (co-treatment and post-treatment) led to a dose-dependent reduction in TBEV titers as well as the viral RNA levels. Antiviral protein myxovirus resistance A mRNA expression was significantly up-regulated and signal transducer and activator of transcription 3 was activated in TBEV-infected A549 cells upon the ribavirin treatment. Induction of inflammatory cytokine tumor necrosis factor alpha by TBEV was decreased in A549 cells with the treatment of ribavirin, whereas interleukin 1 beta release appeared to be unaffected. These results suggest that ribavirin might represent a promising safe and effective antiviral drug against TBEV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.