Thiocoraline, a depsipeptide bisintercalator with potent antitumor activity, was first isolated from marine actinomycete Micromonospora marina. It possesses an intense toxicity to MCF-7 cells at nanomolar concentrations in a dose-dependent manner evaluated by MTT assay and crystal violet staining. We established a human breast thiocoraline-resistant cancer subline of MCF-7/thiocoraline (MCF-7/T) to investigate the expression variation of breast cancer resistance proteins (BCRP) and its subsequent influence on drug resistance. Colony-forming assay showed that the MCF-7 cells proliferated faster than the MCF-7/T cells in vitro. Western blot analysis demonstrated that thiocoraline increased the phosphorylation of Akt. Additionally, the sensitivity of tumor cells to thiocoraline was reduced with a concurrent rise in phosphorylation level of Akt and of BCRP expression.These studies indicated that thiocoraline probably mediated the drug resistance via PI3K/Akt/BCRP signaling pathway. MK-2206 dihydrochloride, a selective phosphorylation inhibitor of Akt, significantly decreased MCF-7 cell viability under exposure to thiocoraline compared to the control. However, it was not obviously able to decrease MCF-7/T cell viability when cells were exposed to thiocoraline.
Oncolytic adenovirus (OA) has attracted increasing attention due to their specific proliferation in tumour cells and resulting in lysis of tumour cells. To further improve the antitumour effect of OA, in this study, we combined CD55‐TRAIL‐IETD‐MnSOD (CD55‐TMn), a CEA‐controlled OA constructed previously, and chemotherapy to investigate their synergistic effect and possible mechanisms. MTT assay was performed to detect antitumour effects. Hoechst 33 342 and flow cytometric analysis were used to examine cell apoptosis. Western blotting was performed to examine cell pyroptosis and apoptosis mechanism. Animal experiment was used to detect antitumour effect of doxorubicin hydrochloride (Dox) combined with CD55‐TMn in vivo. We firstly found that Dox promotes gene expression mediated by CEA‐regulated OA and virus progeny replication by activating phosphorylation of Smad3, and Dox can enhance antitumour effect of CEA‐regulated CD55‐TMn by promoting cell apotopsis and cell pyroptosis. Thus, our results provide an experimental and theoretical basis on tumour therapy by combination treatment of the oncolytic virotherapy and chemotherapy and it is expected to become a novel strategy for liver cancer therapy.
Intrahepatic cholangiocarcinoma (ICC) is the second most frequent type of primary liver cancer. ICC is among the deadliest malignancies, highlighting that novel treatments are urgently needed. Studies have shown that CD44 variant isoforms, rather than the CD44 standard isoform, are selectively expressed in ICC cells, providing an opportunity for the development of an antibody–drug conjugate (ADC)-based targeted therapeutic strategy. In this study, we observed the specific expression of CD44 variant 5 (CD44v5) in ICC tumors. CD44v5 protein was expressed on the surface of most ICC tumors (103 of 155). A CD44v5-targeted ADC, H1D8-DC, was developed that comprises a humanized anti-CD44v5 monoclonal antibody (mAb) conjugated to the microtubule inhibitor monomethyl auristatin E (MMAE) via a cleavable valine-citrulline-based linker. H1D8-DC exhibited efficient antigen binding and internalization in cells expressing CD44v5 on the cell surface. Due to the high expression of cathepsin B in ICC cells, the drug was preferentially released in cancer cells but not in normal cells, thus inducing potent cytotoxicity at picomolar concentrations. In vivo studies showed that H1D8-DC was effective against CD44v5-positive ICC cells and induced tumor regression in patient-derived xenograft models, while no significant adverse toxicities were observed. These data demonstrate that CD44v5 is a bona fide target in ICC and provide a rationale for the clinical investigation of a CD44v5-targeted ADC-based approach.
The glycoprotein H(gH) gene homologue of pseudorabies virus wild strain SL(PRV-SL) was cloned by degenerate polymerase chain reaction (PCR) from PRV infected vero cells. Bioinformatics analysis was performed to predict the characteristics of gH, the results indicated that gH gene encoded a polypeptide, molecular mass of 71.95kda and comprising 687 amino acids. The protein had one signal peptide between 1 and 24AA, one transmembrane region 645-667AA, 27 antigenic determinants and the hydrophobicity between -2.117 and 3.178. The prediction of secondary structure showed that gH had consisted highly of alpha helix(Hh) and random coil(Cc). The phylogenetic tree showed that PRV-SL was similar to others of the Alphaherpesvirinae, and that gH had higher conservative in Alphaherpesvirinae. Cloning and analysis of gH gene laid foundation to further research and exploitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.