Fruits come in different variants and subspecies. While some subspecies of fruits can be easily differentiated, others may require an expertness to differentiate them. Although farmers rely on the traditional methods to identify and classify fruit types, the methods are prone to so many challenges. Training a machine to identify and classify fruit types in place of traditional methods can ensure precision fruit classification. By taking advantage of the state-of-the-art image recognition techniques, we approach fruits classification from another perspective by proposing a high performing hybrid deep learning which could ensure precision mangosteen fruit classification. This involves a proposed optimized Convolutional Neural Network (CNN) model compared to other optimized models such as Xception, VGG16, and ResNet50 using Adam, RMSprop, Adagrad, and Stochastic Gradient Descent (SGD) optimizers on specified dense layers and filters numbers. The proposed CNN model has three types of layers that make up its model, they are: 1) the convolutional layers, 2) the pooling layers, and 3) the fully connected (FC) layers. The first convolution layer uses convolution filters with a filter size of 3x3 used for initializing the neural network with some weights prior to updating to a better value for each iteration. The CNN architecture is formed from stacking these layers. Our self-acquired dataset which is composed of four different types of Malaysian mangosteen fruit, namely Manggis Hutan, Manggis Mesta, Manggis Putih and Manggis Ungu was employed for the training and testing of the proposed CNN model. The proposed CNN model achieved 94.99% classification accuracy higher than the optimized Xception model which achieved 90.62% accuracy in the second position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.