To increase the reliability and success rate of drug discovery, efforts have been made to increase the C(sp3) fraction and avoid flat molecules. sp3-Rich enantiopure amines are most frequently encountered as chiral auxiliaries, synthetic intermediates for pharmaceutical agents and bioactive natural products. Streamlined construction of chiral aliphatic amines has long been regarded as a paramount challenge. Mainstream approaches, including hydrogenation of enamines and imines, C–H amination, and alkylation of imines, were applied for the synthesis of chiral amines with circumscribed skeleton structures; typically, the chiral carbon centre was adjacent to an auxiliary aryl or ester group. Herein, we report a mild and general nickel-catalysed asymmetric reductive hydroalkylation to effectively convert enamides and enecarbamates into drug-like α-branched chiral amines and derivatives. This reaction involves the regio- and stereoselective hydrometallation of an enamide or enecarbamate to generate a catalytic amount of enantioenriched alkylnickel intermediate, followed by C–C bond formation via alkyl electrophiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.