Chronic lymphocytic leukaemia (CLL) is a haematological malignancy characterised by the accumulation of monoclonal mature B lymphocytes (positive for CD5+ and CD23+) in peripheral blood, bone marrow, and lymph nodes. Although CLL is reported to be rare in Asian countries compared to Western countries, the disease course is more aggressive in Asian countries than in their Western counterparts. It has been postulated that this is due to genetic variants between populations. Various cytogenomic methods, either of the traditional type (conventional cytogenetics or fluorescence in situ hybridisation (FISH)) or using more advanced technology such as DNA microarrays, next generation sequencing (NGS), or genome wide association studies (GWAS), were used to detect chromosomal aberrations in CLL. Up until now, conventional cytogenetic analysis remained the gold standard in diagnosing chromosomal abnormality in haematological malignancy including CLL, even though it is tedious and time-consuming. In concordance with technological advancement, DNA microarrays are gaining popularity among clinicians as they are faster and better able to accurately diagnose the presence of chromosomal abnormalities. However, every technology has challenges to overcome. In this review, CLL and its genetic abnormalities will be discussed, as well as the application of microarray technology as a diagnostic platform.
Sex chromosome aneuploidies are the most common chromosome abnormalities associated with infertility in adult men. 47, XYY syndrome also known as Jacob Syndrome (JS) is one sex chromosome aneuploidy. Majority of 47, XYY men show normal spermatogenesis while minority may have varying degrees of impairment in spermatogenesis. This case report discusses about a 32 year old Malay gentleman who was diagnosed to have azoospermia for which cytogenetic analysis revealed an abnormal mosaic 47,XYY/45,X karyotype pattern as the underlying genetic cause. Abnormal mosaic 47,XYY/45,X karyotype associated with infertility is extremely rare in human population and hence reported for its rarity.
Introduction: Chronic lymphocytic leukaemia (CLL) is the most frequent adult leukaemia in the Western world. The clinical presentation varies greatly, from very indolent cases to those with aggressive and fast advancing disease. This variation has significant implications for clinical approaches, therapeutic tactics, and, ultimately, survival durations from diagnosis. Acquired chromosomal aberrations play a key role in CLL aetiology. Due to difficulty to obtain abnormal metaphases for analysis, few methods such as fluorescence in-situ hybridization (FISH) and multiplex ligation-dependent probe assay (MLPA) were employed to detect chromosomal aberration however the methods are limited to specific locus only. Thus, this study is aimed to detect the chromosomal aberrations using DNA microarray platform. Methods: In this retrospective study, DNA archive obtained from 7 CLL patients which collected at diagnosis and subjected to Affymetrix CytoScan® 750K single nucleotide polymorphism (SNP) array following the manufacture procedure. The raw data obtained were analysed using the Chromosome Analysis Suite (ChAS) software (Affymetrix) using annotations of genome version GRCh38 (hg38). Result: Out of 7 patients, 4 of them showing deletion of 13q while 3 of them showing deletion of 14q in various region . Some of the deleted loci were too small (0.42-0.6Mb) to be detected by conventional cytogenetic analysis (CCA). There was also the presence of additional chromosomal aberrations that could be missed by CCA, FISH, or MLPA due to cryptic deletion or duplication that was as small as 0.4MB in size. Conclusion: The present study showed that low resolution chromosomal aberration was able to be detected using DNA microarray platform in comparison to CCA, FISH and MLPA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.