The proposed schematic mechanism via which 5-fluorouracil-loaded gold nanoparticles conjugated with CD133 antibody target colorectal cancer stem cells.
Nanoparticles have tremendous therapeutic potential in the treatment of cancer as they increase drug delivery, attenuate drug toxicity, and protect drugs from rapid clearance. Since Doxil®, the first FDA-approved nanomedicine, several other cancer nanomedicines have been approved and have successfully increased the efficacy over their free drug counterparts. Although their mechanisms of action are well established, their effects towards our immune system, particularly in the tumor microenvironment (TME), still warrant further investigation. Herein, we review the interactions between an approved cancer nanomedicine with TME immunology. We also discuss the challenges that need to be addressed for the full clinical potential of ongoing cancer nanomedicines despite the encouraging preclinical data.
Recent years have witnessed an unprecedented growth in the research area of nanomedicine. There is an increasing optimism that nanotechnology applied to medicine will bring significant advances in the diagnosis and treatment of various diseases, including colorectal cancer (CRC), a type of neoplasm affecting cells in the colon or the rectum. Recent findings suggest that the role of microbiota is crucial in the development of CRC and its progression. Dysbiosis is a condition that disturbs the normal microbial environment in the gut and is often observed in CRC patients. In order to detect and treat precancerous lesions, new tools such as nanotechnology-based theranostics, provide a promising option for targeted marker detection or therapy for CRC. Because the presence of gut microbiota influences the route of biomarker detection and the route of the interaction of nanoparticle/drug complexes with target cells, the development of nanoparticles with appropriate sizes, morphologies, chemical compositions and concentrations might overcome this fundamental barrier. Metallic particles are good candidates for nanoparticle-induced intestinal dysbiosis, but this aspect has been poorly explored to date. Herein, we focus on reviewing and discussing nanotechnologies with potential applications in CRC through the involvement of gut microbiota and highlight the clinical areas that would benefit from these new medical technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.