The purpose of this study was to determine the effect of apigenin on the pharmacokinetics of imatinib and N-desmethyl imatinib in rats. Healthy male SD rats were randomly divided into four groups: A group (the control group), B group (the long-term administration of 165 mg/kg apigenin for 15 days), C group (a single dose of 165 mg/kg apigenin), and D group (a single dose of 252 mg/kg apigenin). The serum concentrations of imatinib and N-desmethyl imatinib were measured by HPLC, and pharmacokinetic parameters were calculated using DAS 3.0 software. The parameters of AUC(0−t), AUC(0−∞), T
max, V
z/F, and CLz/F for imatinib in group B were different from those in group A (P < 0.05). Besides, MRT(0−t) and MRT(0−∞) in groups C and D differed distinctly from those in group A as well. The parameters of AUC(0−t) and C
max for N-desmethyl imatinib in group C were significantly lower than those in group A (P < 0.05); however, compared with groups B and D, the magnitude of effect was modest. Those results indicated that apigenin in the short-term study inhibited the metabolism of imatinib and its metabolite N-desmethyl imatinib, while in the long-term study the metabolism could be accelerated.
The purpose of this paper is to study pharmacokinetics of cortisone (E) and its metabolite cortisol (F) in rats after administration of glycyrrhetinic acid (GA) and cortisone. Healthy male SD rats were randomized to be given 20 mg/kg E or E combined with 10 mg/kg GA. Blood samples were collected at 5, 10, 20, 40, 60, 90, 120, 150, 180, and 240 min after administration. The serum concentrations of E and F were determined by HLPC and pharmacokinetic parameters were calculated using DASver2.0 software. The parameters of AUC(0−t), AUC(0−∞), and Cmax for E in the group of E + GA were significantly higher than those in the group of E (P < 0.01); the half-time (t1/2β) was extended compared to E (P < 0.05) and CL/F was dropped obviously (P < 0.01). The rise in AUC(0−t), AUC(0−∞), and Cmax for cortisol in the group of E + GA was significantly compared to the group of E (P < 0.01). CL/F was lower than E (P < 0.01) and the half-time (t1/2β) was slightly extended. In this study, we find that GA restrains the metabolism of E and F and thus increases AUC, t1/2β, and Cmax of E and F, which may be related to its inhibition effect on 11β-hydroxysteroid dehydrogenase (11β-HSD).
Background: Mestranol is a widely used estrogen, which is converted into its active metabolite ethinyl estradiol by cytochrome P450 (CYP) 2C9. To comprehensively examine the enzymatic activity of reported CYP2C9 variants in Chinese individuals in response to mestranol, wild-type CYP2C9*1 and 35 allelic variants were highly expressed in Sf21 insect cell microsomes and used for the detection of their enzymatic values in vitro. These results showed that the majority of tested variants exhibited decreased clearance values compared to wild type, except for CYP2C9*40 and *36. Method: Insect microsomes expressing the 36 CYP2C9 variants were incubated with 0.25-8 μmol/l mestranol for 30 min at 37°C. Then, the production of the metabolite of mestranol, ethinyl estradiol, was analyzed using high-performance liquid chromatography. Results: Most CYP-catalyzed reactions were sufficiently described by classical Michaelis-Menten kinetic parameters (e.g., Km and Vmax), while 9 variants exhibited atypical or non-Michaelis-Menten kinetic values, which were largely due to the self-inhibitory effectin response to mestranol. Conclusion: This is the first report of these rare alleles for mestranol metabolism, which provides fundamental data for further clinical studies on CYP2C9 alleles for mestranol metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.