IMPORTANCEThe dynamics of coronavirus disease 2019 transmissibility are yet to be fully understood. Better understanding of the transmission dynamics is important for the development and evaluation of effective control policies.OBJECTIVE To delineate the transmission dynamics of COVID-19 and evaluate the transmission risk at different exposure window periods before and after symptom onset. DESIGN, SETTING, AND PARTICIPANTSThis prospective case-ascertained study in Taiwan included laboratory-confirmed cases of COVID-19 and their contacts. The study period was from January 15 to March 18, 2020. All close contacts were quarantined at home for 14 days after their last exposure to the index case. During the quarantine period, any relevant symptoms (fever, cough, or other respiratory symptoms) of contacts triggered a COVID-19 test. The final follow-up date was April 2, 2020. MAIN OUTCOMES AND MEASURESSecondary clinical attack rate (considering symptomatic cases only) for different exposure time windows of the index cases and for different exposure settings (such as household, family, and health care). RESULTSWe enrolled 100 confirmed patients, with a median age of 44 years (range, 11-88 years), including 44 men and 56 women. Among their 2761 close contacts, there were 22 paired index-secondary cases. The overall secondary clinical attack rate was 0.7% (95% CI, 0.4%-1.0%). The attack rate was higher among the 1818 contacts whose exposure to index cases started within 5 days of symptom onset (1.0% [95% CI, 0.6%-1.6%]) compared with those who were exposed later (0 cases from 852 contacts; 95% CI, 0%-0.4%). The 299 contacts with exclusive presymptomatic exposures were also at risk (attack rate, 0.7% [95% CI, 0.2%-2.4%]). The attack rate was higher among household (4.6% [95% CI, 2.3%-9.3%]) and nonhousehold (5.3% [95% CI, 2.1%-12.8%]) family contacts than that in health care or other settings. The attack rates were higher among those aged 40 to 59 years (1.1% [95% CI, 0.6%-2.1%]) and those aged 60 years and older (0.9% [95% CI, 0.3%-2.6%]). CONCLUSIONS AND RELEVANCEIn this study, high transmissibility of COVID-19 before and immediately after symptom onset suggests that finding and isolating symptomatic patients alone may not suffice to contain the epidemic, and more generalized measures may be required, such as social distancing.
Preterm birth is commonly defined as any birth before 37 weeks completed weeks of gestation. An estimated 15 million infants are born preterm globally, disproportionately affecting low and middle income countries (LMIC). It contributes directly to estimated one million neonatal deaths annually and is a significant contributor to childhood morbidity. However, in many clinical settings, the information available to calculate completed weeks of gestation varies widely. Accurate dating of the last menstrual period (LMP), as well as access to clinical and ultrasonographic evaluation are important components of gestational age assessment antenatally. This case definition assign levels of confidence to categorisation of births as preterm, utilising assessment modalities which may be available across different settings. These are designed to enable systematic safety evaluation of vaccine clinical trials and post-implementation programmes of immunisations in pregnancy.
Taiwan Centres for Disease Control.
BackgroundThe dynamics of coronavirus disease 2019 (COVID-19) transmissibility after symptom onset remains unknown. MethodsWe conducted a prospective case-ascertained study on laboratory-confirmed COVID-19 cases and their contacts. Secondary clinical attack rate (considering symptomatic cases only) was analyzed for different exposure windows after symptom onset of index cases and for different exposure settings. ResultsThirty-two confirmed patients were enrolled and 12 paired data (index-secondary cases) were identified among the 1,043 contacts. The secondary clinical attack rate was 0.9% (95% CI 0.5-1.7%). The attack rate was higher among those whose exposure to index cases started within five days of symptom onset (2.4%, 95% CI 1.1-4.5%) than those who were exposed later (zero case from 605 close contacts, 95% CI 0-0.61%). The attack rate was also higher among household contacts (13.6%, 95% CI 4.7-29.5%) and nonhousehold family contacts (8.5%, 95% CI 2.4-20.3%) than that in healthcare or other settings. The higher secondary clinical attack rate for contacts near symptom onset remained when the analysis was restricted to household and family contacts. There was a trend of increasing attack rate with the age of contacts (p for trend < 0.001). ConclusionsHigh transmissibility of COVID-19 near symptom onset suggests that finding and isolating symptomatic patients alone may not suffice to contain the epidemic, and more generalized social distancing measures are required. Rapid reduction of transmissibility over time implies that prolonged hospitalization of mild cases might not be necessary in large epidemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.