Taiwan Centres for Disease Control.
Severe acute respiratory syndrome (SARS) has raised a global alert since March 2003. After its causative agent, SARS-associated coronavirus (SARS-CoV), was confirmed, laboratory methods, including virus isolation, reverse transcriptase–polymerase chain reaction (RT-PCR), and serologic methods, have been quickly developed. In this study, we evaluated four serologic tests ( neutralization test, enzyme-linked immunosorbent assay [ELISA], immunofluorescent assay [IFA], and immunochromatographic test [ICT]) for detecting antibodies to SARS-CoV in sera of 537 probable SARS case-patients with correlation to the RT-PCR . With the neutralization test as a reference method, the sensitivity, specificity, positive predictive value, and negative predictive value were 98.2%, 98.7%, 98.7%, and 98.4% for ELISA; 99.1%, 87.8%, 88.1% and 99.1% for IFA; 33.6%, 98.2%, 95.7%, and 56.1% for ICT, respectively. We also compared the recombinant-based western blot with the whole virus–based IFA and ELISA; the data showed a high correlation between these methods, with an overall agreement of >90%. Our results provide a systematic analysis of serologic and molecular methods for evaluating SARS-CoV infection.
BackgroundInfluenza A viruses are major human and animal pathogens with huge economic and societal impact from illness, hospitalizations, and deaths. Virus-like particles (VLPs) of influenza virus have been suggested as a vaccine candidate offering improved safety and efficacy. To develop this concept further, we established a flexible platform to efficiently generate different subtypes of mammalian-expressed influenza VLPs. Here we demonstrate that these mammalian VLPs strongly resemble the authentic viruses in structure, particle size and composition of host factors, and even glycosylation of viral antigens.Methodology/Principal FindingsIn this study, a mammalian VLP system was established by stable co-expression of four influenza structural proteins (HA, NA, M1, and M2) in a Vero cell line. By replacing the surface glycoproteins of HA and NA, we converted the H3N2-VLP subtype to H5N1-VLP. After centrifugation purification of conditioned media, the particle morphologies, average sizes, and hemagglutination abilities of secreted VLPs were characterized, and the VLP constituents were identified by LC/MS/MS. Protease protection assays demonstrated that specific cellular proteins that co-purified with influenza virions were integrated into mammalian VLPs. The glycosylation profiles of mammalian VLPs as revealed by deglycosylation assays were similar to that of progeny viruses produced from Vero cells. Vaccination of mice with 2.5 µg and above of H5N1-VLP elicited H5-specific IgG1 antibodies and resulted in full protection against lethal infection with homologous virus. These results provide compelling evidence that mammalian VLPs closely emulate the exterior of authentic virus particles not only in antigen presentation but also in biological properties and should provide promising vaccine candidates.Conclusions/SignificanceThis flexible mammalian influenza VLP system offers a superior alternative to the conventional reverse genetic vaccine platform without concerns over inadequate presentation of immune antigens or limitations imposed by the manipulation of real viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.