In this paper, an artificial nanozyme with efficient oxidase-mimicking activity is developed to investigate antibacterial performance. The bamboolike nitrogen-doped carbon nanotubes encapsulating cobalt nanoparticles (N-CNTs@Co) are synthesized by pyrolysis of cobalt cyanide cobalt at high temperature. It is found that the oxidase-mimicking activity of N-CNTs@Co is higher than that of iron-centered nanomaterials synthesized by pyrolysis of prussian blue under the same conditions, confirming that the oxidasemimicking activity is not only related to the active center, but also closely related to its morphology. In addition, the oxidase-mimicking activity of N-CNTs@Co is 12.1 times higher than that of the most reported CeO 2 . N-CNTs@Co can catalyze oxygen to produce a large number of reactive oxygen species (ROS) under acidic conditions, resulting in a favorable antibacterial effect against two representative bacteria, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli). Because the bacterial membrane is damaged by the attack of ROS, the DNA is degraded, eventually causing the bacteria to die. Antibacterial experiments last for 20 days, nevertheless, S. aureus and E. coli do not develop resistance to N-CNTs@Co. The experiments of wound healing in vivo further confirm the high antibacterial efficiency of N-CNTs@Co.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.