The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global crisis. Clinical candidates with high efficacy, ready availability, and that do not develop resistance are in urgent need. Despite that screening to repurpose clinically approved drugs has provided a variety of hits shown to be effective against SARS-CoV-2 infection in cell culture, there are few confirmed antiviral candidates in vivo . In this study, 94 compounds showing high antiviral activity against SARS-CoV-2 in Vero E6 cells were identified from 2,580 FDA-approved small-molecule drugs. Among them, 24 compounds with low cytotoxicity were selected, and of these, 17 compounds also effectively suppressed SARS-CoV-2 infection in HeLa cells transduced with human ACE2. Six compounds disturb multiple processes of the SARS-CoV-2 life cycle. Their prophylactic efficacies were determined in vivo using Syrian hamsters challenged with SARS-CoV-2 infection. Seven compounds reduced weight loss and promoted weight regain of hamsters infected not only with the original strain but also the D614G variant. Except for cisatracurium, six compounds reduced hamster pulmonary viral load, and IL-6 and TNF -α mRNA when assayed at 4 d postinfection. In particular, sertraline, salinomycin, and gilteritinib showed similar protective effects as remdesivir in vivo and did not induce antiviral drug resistance after 10 serial passages of SARS-CoV-2 in vitro , suggesting promising application for COVID-19 treatment. Supporting Information The supporting information is available online at 10.1007/s11427-021-2031-7. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.
The emergence of significant arboviruses and their spillover transmission to humans represent a major threat to global public health. No approved drugs are available for the treatment of significant arboviruses in circulation today. The repurposing of clinically approved drugs is one of the most rapid and promising strategies in the identification of effective treatments for diseases caused by arboviruses. Here, we screened small-molecule compounds with anti-tick-borne encephalitis virus, West Nile virus, yellow fever virus and chikungunya virus activity from 2580 FDA-approved drugs. In total, 60 compounds showed antiviral efficacy against all four of the arboviruses in Huh7 cells. Among these compounds, ixazomib and ixazomib citrate (inhibitors of 20S proteasome β5) exerted antiviral effects at a low-micromolar concentration. The time-of-drug-addition assay suggested that ixazomib and ixazomib citrate disturbed multiple processes in viruses’ life cycles. Furthermore, ixazomib and ixazomib citrate potently inhibited chikungunya virus replication and relieved virus-induced footpad swelling in a mouse model. These results offer critical information which supports the role of ixazomib as a broad-spectrum agent against arboviruses.
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is the seventh member of the coronavirus family that can infect humans. Recently, more contagious and pathogenic variants of SARS‐CoV‐2 have been continuously emerging. Clinical candidates with high efficacy and ready availability are still in urgent need. To identify potent anti‐SARS‐CoV‐2 repurposing drugs, we evaluated the antiviral efficacy of 18 selective estrogen receptor modulators (SERMs) against SARS‐CoV‐2 infection. Six SERMs exhibited excellent anti‐SARS‐CoV‐2 effects in Vero E6 cells and three human cell lines. Clomifene citrate, tamoxifen, toremifene citrate, and bazedoxifene acetate reduced the weight loss of hamsters challenged with SARS‐CoV‐2, and reduced hamster pulmonary viral load and interleukin‐6 expression when assayed at 4 days postinfection. In particular, bazedoxifene acetate was identified to act on the penetration stage of the postattachment step via altering cholesterol distribution and endosome acidification. And, bazedoxifene acetate inhibited pseudoviruses infection of original SARS‐CoV‐2, Delta variant, Omicron variant, and SARS‐CoV. These results offer critical information supporting bazedoxifene acetate as a promising agent against coronaviruses.
Cigarette smoke aggravates severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection. However, the underlying mechanisms remain unclear. Here, they show that benzo[a]pyrene in cigarette smoke extract facilitates SARS‐CoV‐2 infection via upregulating angiotensin‐converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Benzo[a]pyrene trans‐activates the promoters of ACE2 and TMPRSS2 by upregulating nuclear receptor subfamily 4 A number 2 (NR4A2) and promoting its binding of NR4A2 to their promoters, which is independent of functional genetic polymorphisms in ACE2 and TMPRSS2. Benzo[a]pyrene increases the susceptibility of lung epithelial cells to SARS‐CoV‐2 pseudoviruses and facilitates the infection of authentic Omicron BA.5 in primary human alveolar type II cells, lung organoids, and lung and testis of hamsters. Increased expression of Nr4a2, Ace2, and Tmprss2, as well as decreased methylation of CpG islands at the Nr4a2 promoter are observed in aged mice compared to their younger counterparts. NR4A2 knockdown or interferon‐λ2/λ3 stimulation downregulates the expression of NR4A2, ACE2, and TMPRSS2, thereby inhibiting the infection. In conclusion, benzo[a]pyrene enhances SARS‐CoV‐2 infection by boosting NR4A2‐induced ACE2 and TMPRSS2 expression. This study elucidates the mechanisms underlying the detrimental effects of cigarette smoking on SARS‐CoV‐2 infection and provides prophylactic options for coronavirus disease 2019, particularly for the elderly population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.