The innervation of the capybara thoracic limb was characterized. The following nerves were observed constituting the right and left brachial plexus: n. dorsalis scapulae (C4 and C5; C4, C5 and C6) which innervates the m. serratus ventralis cervicis and m. rhomboideus; n. suprascapularis (C4, C5 and C6; C5, C6 and C7) supplying the m. supraspinatus and the m. infraspinatus; cranial and caudal nn. subscapulares (C5 and C6; C5, C6 and C7) innervating the m. subscapularis; n. axillaris (C5 and C6; C6, C7 and C8) which supplies the m. triceps brachii (caput mediale); n. radialis (C6, C7, C8 and T1; C6, C7 and C8) which innervates the m. triceps brachii (caput longum and caput mediale) and the m. extensor carpi radialis, m. extensor digitorum communis, m. extensor digitorum lateralis; n. medianus joined to the n. musculocutaneus (C6, C7, C8 and T1; C6, C7 and C8) supplying the m. biceps brachii, m. flexor carpi radialis and m. coracobrachialis; n. ulnaris (C6, C7, C8 and T1; C6, C7 and C8) leading to the m. flexor carpi radialis, the m. flexor carpi ulnaris and the m. flexor digitorum superficialis; n. thoracodorsalis (C6, C7, C8 and T1; C6, C7 and C8) supplying the m. latissimus dorsi; n. thoracicus lateralis (C8, T1; C7, C8, T1) which innervates m. pectoralis profundus (caudal portion); n. thoracicus longus (C6, C7; C7, C8) which is distributed to the m. serratus ventralis thoracis. A communication between the n. radialis and n. ulnaris was observed at the left brachial plexus.
The superior cervical ganglion (SCG) provides sympathetic input to the head and neck, its relation with mandible, submandibular glands, eyes (second and third order control) and pineal gland being demonstrated in laboratory animals. In addition, the SCG’s role in some neuropathies can be clearly seen in Horner’s syndrome. In spite of several studies published involving rats and mice, there is little morphological descriptive and comparative data of SCG from large mammals. Thus, we investigated the SCG’s macro- and microstructural organization in medium (dogs and cats) and large animals (horses) during a very specific period of the post-natal development, namely maturation (from young to adults). The SCG of dogs, cats and horses were spindle shaped and located deeply into the bifurcation of the common carotid artery, close to the distal vagus ganglion and more related to the internal carotid artery in dogs and horses, and to the occipital artery in cats. As to macromorphometrical data, that is ganglion length, there was a 23.6% increase from young to adult dogs, a 1.8% increase from young to adult cats and finally a 34% increase from young to adult horses. Histologically, the SCG’s microstructure was quite similar between young and adult animals and among the 3 species. The SCG was divided into distinct compartments (ganglion units) by capsular septa of connective tissue. Inside each ganglion unit the most prominent cellular elements were ganglion neurons, glial cells and small intensely fluorescent cells, comprising the ganglion’s morphological triad. Given this morphological arrangement, that is a summation of all ganglion units, SCG from dogs, cats and horses are better characterized as a ganglion complex rather than following the classical ganglion concept. During maturation (from young to adults) there was a 32.7% increase in the SCG’s connective capsule in dogs, a 25.8% increase in cats and a 33.2% increase in horses. There was an age-related increase in the neuronal profile size in the SCG from young to adult animals, that is a 1.6-fold, 1.9-fold and 1.6-fold increase in dogs, cats and horses, respectively. On the other hand, there was an age-related decrease in the nuclear profile size of SCG neurons from young to adult animals (0.9-fold, 0.7-fold and 0.8-fold in dogs, cats and horses, respectively). Ganglion connective capsule is composed of 2 or 3 layers of collagen fibres in juxtaposition and, as observed in light microscopy and independently of the animal’s age, ganglion neurons were organised in ganglionic units containing the same morphological triad seen in light microscopy.
Capybara might be a useful model for studying changes in cerebral circulation as the natural atrophy of the internal carotid artery (ICA) occurs in this animal at maturation. In this study, confocal and electron microscopy combined with immunohistochemical techniques were applied in order to reveal the changes in morphology and innervation to the proximal part of ICA in young (6-month-old) and mature (12-month-old) capybaras. Some features of the basilar artery (BA) were also revealed. The ICA of young animals degenerated to a ligamentous cord in mature animals. Immunolabelling positive for pan-neuronal marker protein gene product 9.5 but negative for tyrosine hydroxylase was observed in the proximal part of ICA at both ages examined. Axon varicosities positive for synaptophysin were present in the adventitia of ICA of young animals but were absent in the ligamentous cord of mature animals. In the ICA of young animals, adventitial connective tissue invaded the media suggesting that the process of regression of this artery began within the first 6 months of life. An increase in size of the BA was found in mature animals indicating increased blood flow in the vertebro-basilar system, possibly making capybara susceptible to cerebrovascular pathology (e.g. stroke). Capybara may therefore provide a natural model for studying adaptive responses to ICA regression/occlusion.
The caudal mesenteric ganglion (CMG) is located ventral to the abdominal aorta involving the initial portion of the caudal mesenteric artery. Its macro and microstructural organization was studied in 40 domestic dogs. From the CMG, there were three nerves: the main hypogastric, the left hypogastric and the right hypogastric. The main hypogastric nerve emits two branches: the left colonic nerve and the cranial rectal nerve. Afterwards they give rise to branches to the descending colon (colonic nerves) and rectum (rectal nerves). The cranial rectal nerve, and left and right hypogastric nerves were directed to the pelvic ganglia. The microscopic study permitted the observation of the histological organization of the CMG, which is a ganglionic complex composed of an agglomeration of ganglionic units. Each ganglionic unit is composed of three major cell types: principal ganglion neurones (PGNs), glial cells and small intensely fluorescent (SIF) cells, and they were separated by nerve fibres, septa of connective tissue (types 1 and 3 collagen fibres), fibroblasts and intraganglionic capillaries. Hence, the ganglionic unit is the morphological support for the microstructural organization of the CMG complex. Further, each ganglionic unit is constituted by a cellular triad (SIF cells, PGN and glial cells), which is the cytological basis for each ganglionic unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.