Resveratrol is notable not only for its functions in disease resistance in plants but also for its health benefits when it forms part of the human diet. Identification of new transcription factors helps to reveal the regulatory mechanisms of stilbene synthesis. Here, the WRKY53 transcription factor was isolated from the Chinese wild grape, Vitis quinquangularis. Vqwrky53 was expressed in a variety of tissues and responded to powdery mildew infection and to exogenous hormone application. VqWRKY53 was located in the nucleus and had transcriptional activation activity in yeast. A yeast two-hybrid assay and a bimolecular fluorescence complementation assay confirmed that VqWRKY53 interacted physically with VqMYB14 and VqMYB15, which have previously been reported to regulate stilbene synthesis. When Vqwrky53 was overexpressed in grape leaves, the expression of VqSTS32 and VqSTS41 and the content of stilbenes were increased. A yeast one-hybrid assay demonstrated that VqWRKY53 could bind directly to the promoters of STS genes. Overexpression of Vqwrky53 activated β-glucuronidase expression, driven by STS promoters, and co-expressing Vqwrky53 with VqMYB14 and VqMYB15 showed stronger regulatory functions. Heterologous overexpression of Vqwrky53 in Arabidopsis accelerated leaf senescence and disease resistance to PstDC3000.
Grapevine powdery mildew is caused by Erysiphe necator that seriously harms grape production in the world. Stilbene synthase makes phytoalexins that contribute to the resistance of grapevine against powdery mildew. A novel VqNSTS3 was identified and cloned from Chinese wild Vitis quinquangularis accession Danfeng-2. Novel VqNSTS3 was transferred into susceptible ‘Thompson Seedless’ by Agrobacterium-mediated transformation. The transgenic plants showed resistance to the disease and activated other resistance-related genes. VqNSTS3 expression in grapevine is regulated by VqWRKY33, which binds to TTGACC in the VqNSTS3 promoter with fungal elicitor responsive element. Furthermore, VqWRKY33 was phosphorylated by VqMAPK3/VqMAPK6 and thus lead to enhanced signal transduction and increased VqNSTS3 expression. ProVqNSTS3::VqNSTS3-GFP of transgenic VqNSTS3 in Arabidopsis thaliana was observed to move to and wrap the pathogen haustoria and block the invasion of Golovinomyces cichoracearum. These results demonstrated that stilbene accumulation of novel VqNSTS3 of a Chinese wild grapevine prevented pathogen invasion and enhanced resistance to powdery mildew. Therefore, VqNSTS3 can be used in generating powdery mildew-resistant grapevines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.