The reaction of H-phosphinates and secondary phosphine oxides with amines and alcohols proceeds highly stereospecifically to give the corresponding coupling products with inversion of configuration at the phosphorus center under the Atherton-Todd reaction conditions. This finding leads to the establishment of a general and efficient method for the synthesis of a variety of optically active organophosphorus acid derivatives from the easily available chiral H-phosphinates and secondary phosphine oxides.
Matching people across multiple camera views known as person reidentification is a challenging problem due to the change in visual appearance caused by varying lighting conditions. The perceived color of the subject appears to be different under different illuminations. Previous works use color as it is or address these challenges by designing color spaces focusing on a specific cue. In this paper, we propose an approach for learning color patterns from pixels sampled from images across two camera views. The intuition behind this work is that, even though varying lighting conditions across views affect the pixel values of the same color, the final representation of a particular color should be stable and invariant to these variations, i.e., they should be encoded with the same values. We model color feature generation as a learning problem by jointly learning a linear transformation and a dictionary to encode pixel values. We also analyze different photometric invariant color spaces as well as popular color constancy algorithm for person reidentification. Using color as the only cue, we compare our approach with all the photometric invariant color spaces and show superior performance over all of them. Combining with other learned low-level and high-level features, we obtain promising results in VIPeR, Person Re-ID 2011, and CAVIAR4REID data sets.
2,2-Diphenyl-1-picrylhydrazyl-ultra-high performance liquid chromatography-Q-time-of-flight mass spectrometry (DPPH-UPLC-Q-TOF/MS), as a rapid and efficient means, now was used for the first time to screen antioxidants from Selaginella doederleinii. The nine biflavone compounds were screened as potential antioxidants. The biflavones were structurally identified and divided into the three types, that is, amentoflavone-type, robustaflavone-type, and hinokiflavone-type biflavonoids. Among the compounds bilobetin (3) and putraflavone (8) were found from Selaginella doederleinii for the first time and others including amentoflavone (1), robustaflavone (2), 4′-methoxy robustaflavone (4), podocarpusflavone A (5), hinokiflavone (6), ginkgetin (7), and heveaflavone (9) were identified previously in the plant. Moreover, nine biflavones possessed a good antioxidant activity via their DPPH free radical scavenging. It demonstrates that DPPH-UPLC-Q-TOF/MS exhibits strong capacity in separation and identification for small molecule. The method is suitable for rapid screening of antioxidants without the need for complicated systems and additional instruments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.