Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive lethal disease that involves selective annihilation of motoneurons. Glial cell line-derived neurotrophic factor (GDNF) is proposed to be a promising therapeutic agent for ALS and other motor neuron diseases. Because adeno-associated virus (AAV) has been developed as an attractive gene delivery system with proven safety, we explored the therapeutic efficacy of intramuscular delivery of the GDNF gene mediated by an AAV vector (AAV-GDNF) in the G93A mouse model of ALS. We show here that AAV-GDNF leads to substantial and long-lasting expression of transgenic GDNF in a large number of myofibers with its accumulation at the sites of neuromuscular junctions. Detection of GDNF labeled with FLAG in the anterior horn neurons, but not beta-galactosidase expressed as a control, indicates that most of the transgenic GDNF observed there is retrogradely transported GDNF protein from the transduced muscles. This transgenic GDNF prevents motoneurons from their degeneration, preserves their axons innervating the muscle, and inhibits the treated-muscle atrophy. Furthermore, four-limb injection of AAV-GDNF postpones the disease onset, delays the progression of the motor dysfunction, and prolongs the life span in the treated ALS mice. Our finding thus indicates that AAV-mediated GDNF delivery to the muscle is a promising means of gene therapy for ALS.
One potential strategy for gene therapy of Parkinson's disease (PD) is the local production of dopamine (DA) in the striatum induced by restoring DA-synthesizing enzymes. In addition to tyrosine hydroxylase (TH) and aromatic-L-amino-acid decarboxylase (AADC), GTP cyclohydrolase I (GCH) is necessary for efficient DA production. Using adeno-associated virus (AAV) vectors, we previously demonstrated that expression of these three enzymes in the striatum resulted in long-term behavioral recovery in rat models of PD. We here extend the preclinical exploration to primate models of PD. Mixtures of three separate AAV vectors expressing TH, AADC, and GCH, respectively, were stereotaxically injected into the unilateral putamen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys. Coexpression of the enzymes in the unilateral putamen resulted in remarkable improvement in manual dexterity on the contralateral to the AAV-TH/-AADC/-GCH-injected side. Behavioral recovery persisted during the observation period (four monkeys: 48 days, 65 days, 50 days, and >10 months, each). TH-immunoreactive (TH-IR), AADC-IR, and GCH-IR cells were present in a large region of the putamen. Microdialysis demonstrated that concentrations of DA in the AAV-TH/-AADC/-GCH-injected putamen were increased compared with the control side. Our results show that AAV vectors efficiently introduce DA-synthesizing enzyme genes into the striatum of primates with restoration of motor functions. This triple transduction method may offer a potential therapeutic strategy for PD.
The aim of the present study is to examine the role of Kcnj10 (Kir.4.1) in contributing to the basolateral K conductance in the cortical thick ascending limb (cTAL) using Kcnj10+/+ wild-type (WT) and Kcnj10−/− knockout (KO) mice. The patch-clamp experiments detected a 40- and an 80-pS K channel in the basolateral membrane of the cTAL. Moreover, the probability of finding the 40-pS K was significantly higher in the late part of the cTAL close to the distal convoluted tubule than those in the initial part. Immunostaining showed that Kcnj10 staining was detected in the basolateral membrane of the cTAL but the expression was not uniformly distributed. The disruption of Kcnj10 completely eliminated the 40-pS K channel but not the 80-pS K channel, suggesting the role of Kcnj10 in forming the 40-pS K channel of the cTAL. Also, the disruption of Kcnj10 increased the probability of finding the 80-pS K channel in the cTAL, especially in the late part of the cTAL. Because the channel open probability of the 80-pS K channel in KO was similar to those of WT mice, the increase in the 80-pS K channel may be achieved by increasing K channel number. The whole cell recording further showed that K reversal potential measured with 5 mM K in the bath and 140 mM K in the pipette was the same in the WT and KO mice. Moreover, Western blot and immunostaining showed that the disruption of Kcnj10 did not affect the expression of Na-K-Cl cotransporter 2 (NKCC2). We conclude that Kir.4.1 is expressed in the basolateral membrane of cTAL and that the disruption of Kir.4.1 has no significant effect on the membrane potential of the cTAL and NKCC2 expression.
In this study, drawing from adaptive structuration theory (AST) and embeddedness theory, we investigate the relationship between the interaction of HRM digitalization and HRM system maturity on firm performance as well as the moderating role played by HR strategic and business involvement. On the basis of a sample of 211 listed enterprises of China, our results indicate that the interaction of HRM digitalization and HRM system maturity is positively related to firm performance and that the relationship is strengthened by HR strategic and business involvement. The implications of our findings for research and practice are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.