In order to improve the direction-of-arrival (DOA) estimation performance of quasi-stationary signals (QSS) using a uniform circular array (UCA), this paper addresses novel method in the context of sparse representation framework. Based on the Khatri-Rao transform, UCA can achieve a higher number of degrees of freedom to resolve more signals than the number of sensors. Then, by exploiting the two-dimensional (2-D) joint grid of UCA, the estimations of elevation and azimuth angles can be obtained from the sparse representation perspective. Finally, an expectation-maximization iteration method is developed to estimate DOAs of QSS from a Bayesian perspective. Since SBL makes full use of the sparse structure of QSS, thus the proposed algorithm possesses higher angular resolution and better DOA estimation precision compared with existing methods. Numerical simulations demonstrate the validity of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.