Variable inlet guide vanes (VIGVs) can regulate pressure ratio and mass flow at constant rotational speed in centrifugal compressors as a result of inducing a controlled prewhirl in front of impellers. Radial inlets and VIGVs are typical upstream components in front of the first-stage impellers in many industrial centrifugal compressors. However, previous investigations on VIGVs in centrifugal compressors were mostly conducted under the condition of axial inlets, and this study aims to focus on the effects of radial inlet on the VIGVs performance of a centrifugal compressor stage. The axial inlet stage model is compared with the radial inlet stage model with splitters using numerical flow simulation. The flow from the radial inlet was nonuniform in both circumferential and radial directions; thus, the VIGVs, the impeller, the vaneless diffuser, and the return vane channel are modelled with fully 360 passages. The three-dimensional (3D) flow field is numerically simulated at VIGVs setting angles ranging from À20 to 60 . The overall stage performance parameters are obtained by integrating the field quantities. Though the splitters are equipped in the radial inlet, the overall stage polytropic efficiency decreases by an average of 4 per cent and total pressure ratio decreases by an average of 3.3 per cent in comparison with the axial stage model. This can be attributed to the effect of both flow non-uniformity induced by radial inlet and flow loss in the radial inlet at different VIGV setting angles. The flow loss in the radial inlet with splitters is the main reason of the stage performance decrease compared with the flow non-uniformity. The simulation results show that the performance of VIGVs is degraded by its inlet flow distortions resulting from a radial inlet. The results in this study can be applied to centrifugal compressor design and optimization.
Numerical simulations of turbulent flows in a stirred dead-end membrane bioreactor are performed by the RNG k-ε model based on finite volume method using Fluent codes. Comparisons of numerical and experimental results confirm the reliability and feasibility of the constructed model. Flow structures such as wake flows and circulation loops in stirred flows were well simulated. An increase of stirring speed is proposed to use to minimize the low velocity region. The single vane stirrer is found to be beneficial for biological separations. Results reveal that the increase of vane number can enhance the mixing effect in flow domains. However, a circular disk stirrer goes against the formation of vertical circulations. The six-vane stirrer is found to be able to provide a uniform distribution of high shear stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.