Summary
Heavily damped quadratic eigenvalue problem (QEP) is a special type of QEPs. It has a large gap between small and large eigenvalues in absolute value. One common way for solving QEP is to linearize the original problem via linearizations. Previous work on the accuracy of eigenpairs of not heavily damped QEP focuses on analyzing the backward error of eigenpairs relative to linearizations. The objective of this paper is to explain why different linearizations lead to different errors when computing small and large eigenpairs. To obtain this goal, we bound the backward error of eigenpairs relative to the linearization methods. Using these bounds, we build upper bounds of growth factors for the backward error. We present results of numerical experiments that support the predictions of the proposed methods.
The classical planar Richtmyer–Meshkov instability (RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order, and then according to definition of nonlinear saturation amplitude (NSA) in Rayleigh–Taylor instability (RTI), the NSA in planar RMI is obtained explicitly. It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface, while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength. Without marginal influence of the initial amplitude, the NSA increases linearly with wavelength. The NSA normalized by the wavelength in planar RMI is about 0.11, larger than that corresponding to RTI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.