Emerging evidence has suggested that microRNAs (miRNAs) have an important role in tumor development and progression by regulating diverse cellular pathways. Here we describe the function and regulation network of miR-433 in bladder cancer (BCa). miR-433 is frequently downregulated in BCa tissues compared with adjacent non-cancerous tissues. Epigenetic mechanisms may be involved in the regulation of miR-433 expression. Enforced expression of miR-433 significantly inhibits proliferation, colony formation, migration, and invasion in BCa cells. In addition, miR-433 inhibits the epithelial–mesenchymal transition (EMT) in BCa cells by regulating c-Met/Akt/GSK-3β/Snail signaling pathway. Both c-Met and CREB1 are downstream target genes of miR-433. CREB1 can also indirectly regulate c-Met/Akt/GSK-3β/Snail signaling via MITF. Furthermore, CREB1 expression is an independent prognostic factor for overall survival in patients with BCa. Finally, there appears to exist a reciprocal regulation between c-Met and miR-433/miR-409-3p. Taken together, this study reveals that miR-433-c-MET/CREB1-Akt/GSK-3β/Snail signaling is critical to EMT in BCa. Targeting the pathway described here may open up new prospects to restrict metastatic progression of BCa.
Fluorescence polarization microscopy images both the intensity and orientation of fluorescent dipoles and plays a vital role in studying molecular structures and dynamics of bio-complexes. However, current techniques remain difficult to resolve the dipole assemblies on subcellular structures and their dynamics in living cells at super-resolution level. Here we report polarized structured illumination microscopy (pSIM), which achieves super-resolution imaging of dipoles by interpreting the dipoles in spatio-angular hyperspace. We demonstrate the application of pSIM on a series of biological filamentous systems, such as cytoskeleton networks and λ-DNA, and report the dynamics of short actin sliding across a myosin-coated surface. Further, pSIM reveals the side-by-side organization of the actin ring structures in the membrane-associated periodic skeleton of hippocampal neurons and images the dipole dynamics of green fluorescent protein-labeled microtubules in live U2OS cells. pSIM applies directly to a large variety of commercial and home-built SIM systems with various imaging modality.
BackgroundEmerging evidence has suggested that dysregulation of miR-182-5p may contribute to tumor development and progression in several types of human cancers. However, its role in renal cell carcinoma (RCC) is still unknown.MethodsQuantitative RT-PCR was used to quantify miR-182-5p expression in RCC clinical tissues. Bisulfite sequencing PCR was used for DNA methylation analysis. The CCK-8, colony formation, flow cytometry, and a xenograft model were performed. Immunohistochemistry was conducted using the peroxidase and DAB methods. A miR-182-5p target was determined by luciferase reporter assays, quantitative RT-PCR, and Western blotting.ResultsmiR-182-5p is frequently down-regulated in human RCC tissues. Epigenetic modulation may be involved in the regulation of miR-182-5p expression. Enforced expression of miR-182-5p in RCC cells significantly inhibited the proliferation and tumorigenicity in vitro and in vivo. Additionally, overexpression of miR-182-5p induced G1-phase arrest via inhibition of AKT/FOXO3a signaling. Moreover, FLOT1 was confirmed as a target of miR-182-5p. Silencing FLOT1 by small interfering RNAs phenocopied the effects of miR-182-5p overexpression, whereas restoration of FLOT1 in miR-182-5p -overexpressed RCC cells partly reversed the suppressive effects of miR-182-5p.ConclusionsThese findings highlight an important role for miR-182-5p in the pathogenesis of RCC, and restoration of miR-182-5p could be considered as a potential therapeutic strategy for RCC therapy.
A meta-analysis was conducted to quantitatively evaluate the correlation between night shift work and the risk of colorectal cancer. We searched for publications up to March 2015 using PubMed, Web of Science, Cochrane Library, EMBASE and the Chinese National Knowledge Infrastructure databases, and the references of the retrieved articles and relevant reviews were also checked. OR and 95% CI were used to assess the degree of the correlation between night shift work and risk of colorectal cancer via fixed- or random-effect models. A dose-response meta-analysis was performed as well. The pooled OR estimates of the included studies illustrated that night shift work was correlated with an increased risk of colorectal cancer (OR = 1.318, 95% CI 1.121–1.551). No evidence of publication bias was detected. In the dose-response analysis, the rate of colorectal cancer increased by 11% for every 5 years increased in night shift work (OR = 1.11, 95% CI 1.03–1.20). In conclusion, this meta-analysis indicated that night shift work was associated with an increased risk of colorectal cancer. Further researches should be conducted to confirm our findings and clarify the potential biological mechanisms.
BackgroundCurrent evidence indicates that miR-608 is widely down-regulated in various malignant tumors including liver cancer, colon cancer, lung cancer and glioma, and acts as a tumor suppressor by inhibiting cell proliferation, invasion and migration or by promoting apoptosis. The specific biological function of miR-608 in bladder cancer is still unknown.MethodsqRT-PCR and Chromogenic in Situ Hybridization (CISH) was conducted to assess the expression of miR-608 in paired BCa tissues and adjacent non-tumor bladder urothelial tissues. Bisulfite sequencing PCR was used for DNA methylation analysis. CCK-8, colony formation and flow cytometry assays were performed, and a xenograft model was studied. Immunohistochemistry staining was performed with peroxidase and DAB. The target of miR-608 was validated with a dual-luciferase reporter assay, quantitative RT-PCR, and Western blotting.ResultsmiR-608 is frequently down-regulated in human BCa tissues. The methylation status of CpG islands is involved in the regulation of miR-608 expression. Overexpression of miR-608 inhibits the proliferation and tumorigenesis of BCa cells in vitro and in vivo. Additionally, up-regulation of miR-608 in BCa cells induces G1-phase arrest through AKT/FOXO3a signaling. In contrast, down-regulation of miR-608 promotes proliferation and cell cycle progression in BCa cells. Moreover, the expression of FLOT1 was directly inhibited by miR-608, the down-regulation of FLOT1 induced by siFLOT1 could be significantly reversed by miR-608 inhibitor. Similarly, the up-regulation of FLOT1 by FLOT1 overexpression plasmid (pFLOT1) could also reverse the suppressed cell proliferation caused by miR-608.ConclusionsmiR-608 is a potential tumor suppressor in BCa, and the restoration of miR-608 might be a promising therapeutic option for BCa.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-017-0664-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.