Summary
A repeat expansion in C9ORF72 causes frontotemporal dementia and amyotrophic lateral sclerosis (c9FTD/ALS). RNA of the expanded repeat (r(GGGGCC)exp) forms nuclear foci or undergoes repeat-associated non-ATG (RAN) translation producing “c9RAN proteins”. Since neutralizing r(GGGGCC)exp could inhibit these potentially toxic events, we sought to identify small molecule binders of r(GGGGCC)exp. Chemical and enzymatic probing of r(GGGGCC)8 indicate it adopts a hairpin structure in equilibrium with a quadruplex structure. Using this model, bioactive small molecules targeting r(GGGGCC)exp were designed and found to significantly inhibit RAN translation and foci formation in cultured cells expressing r(GGGGCC)66 and neurons trans-differentiated from fibroblasts of repeat expansion carriers. Finally, we show that poly(GP) c9RAN proteins are specifically detected in c9ALS patient cerebrospinal fluid. Our findings highlight r(GGGGCC)exp-binding small molecules as a possible c9FTD/ALS therapeutic, and suggest c9RAN proteins could potentially serve as a pharmacodynamic biomarker to assess efficacy of therapies that target r(GGGGCC)exp.
Epigenetic gene silencing is seen in several repeat-expansion diseases. In fragile X syndrome, the most common genetic form of mental retardation, a CGG trinucleotide–repeat expansion adjacent to the fragile X mental retardation 1 (FMR1) gene promoter results in its epigenetic silencing. Here, we show that FMR1 silencing is mediated by the FMR1 mRNA. The FMR1 mRNA contains the transcribed CGG-repeat tract as part of the 5′ untranslated region, which hybridizes to the complementary CGG-repeat portion of the FMR1 gene to form an RNA·DNA duplex. Disrupting the interaction of the mRNA with the CGG-repeat portion of the FMR1 gene prevents promoter silencing. Thus, our data link trinucleotide-repeat expansion to a form of RNA-directed gene silencing mediated by direct interactions of the trinucleotide-repeat RNA and DNA.
The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is an expanded G 4 C 2 repeat [(G 4 C 2 ) exp ] in C9ORF72. ALS/FTD-associated toxicity has been traced to the RNA transcribed from the repeat expansion [r(G 4 C 2 ) exp ], which sequesters RNA-binding proteins (RBPs) and undergoes repeat-associated non-ATG (RAN) translation to generate toxic dipeptide repeats. Using in vitro and cell-based assays, we identified a small molecule (4) that selectively bound r(G 4 C 2 ) exp , prevented sequestration of an RBP, and inhibited RAN translation. Indeed, biophysical characterization showed that 4 selectively bound the hairpin form of r(G 4 C 2 ) exp , and nuclear magnetic resonance spectroscopy studies and molecular dynamics simulations defined this molecular recognition event. Cellular imaging revealed that 4 localized to r(G 4 C 2 ) exp cytoplasmic foci, the putative sites of RAN translation. Collectively, these studies highlight that the hairpin structure of r(G 4 C 2 ) exp is a therapeutically relevant target and small molecules that bind it can ameliorate c9ALS/FTD-associated toxicity.
In the original version of this paper, panels C and D in the legend of Figure 4 were referred to in reverse order. The phrase ''either with (C) or without (D) mS'' should have been ''either without (C) or with (D) mS.'' This has now been corrected in the article online.
RNA transcripts containing expanded nucleotide repeats cause many incurable diseases via various mechanisms. One such disorder, fragile X-associated tremor ataxia syndrome (FXTAS), is caused by a noncoding r(CGG) repeat expansion (r(CGG)exp) that (i) sequesters proteins involved in RNA metabolism in nuclear foci, causing dysregulation of alternative pre-mRNA splicing, and (ii) undergoes repeat associated non-ATG translation (RANT), which produces toxic homopolymeric proteins without using a start codon. Here, we describe the design of two small molecules that inhibit both modes of toxicity and the implementation of various tools to study perturbation of these cellular events. Competitive Chemical Cross Linking and Isolation by Pull Down (C-Chem-CLIP) established that compounds bind r(CGG)exp and defined small molecule occupancy of r(CGG)exp in cells, the first approach to do so. Using an RNA GFP mimic, r(CGG)exp-Spinach2, we observe that our optimal designed compound binds r(CGG)exp and affects RNA localization by disrupting preformed RNA foci. These events correlate with an improvement of pre-mRNA splicing defects caused by RNA gain of function. In addition, the compounds reduced levels of toxic homopolymeric proteins formed via RANT. Polysome profiling studies showed that small molecules decreased loading of polysomes onto r(CGG)exp, explaining decreased translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.